Regulations and Curriculum for Master of Technology (M. Tech.) Computer Science and Engineering

REGULATIONS GOVERNING THE DEGREE OF MASTER OF TECHNOLOGY (M.Tech.)

UNDER OUTCOME BASED EDUCATION (OBE)

AND

CHOICE BASED CREDIT SYSTEM (CBCS) SCHEME

OF

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(Effective from academic year 2022 -23)

(Deemed to be University under Section 3 of UGC Act, 1956) (Placed under Category 'A' by MHRD, Govt. of India, Accredited with 'A+' Grade by NAAC) University Enclave, Medical Sciences Complex, Deralakatte, Mangalore – 575 018, Karnataka INDIA Tel: +91-824-2204300/01/02/03, Fax: 91-824-2204305

Website: www.nitte.edu.in E-mail: info@nitte.edu.in

VISION

To build a humane society through excellence in the education and healthcare

MISSION

To develop

Nitte (Deemed to be University) As a centre of excellence imparting quality education, Generating competent, skilled manpower to face the scientific and social challenges with a high degree of credibility, integrity, ethical standards and social concern

NMAM INSTITUTE OF TECHNOLOGY

Off-campus Centre, Nitte (Deemed to be University) NITTE-574110, Karkala Taluk, Udupi District, Karnataka, India

Vision Statement

Pursuing Excellence, Empowering people, Partnering in Community Development

Mission Statement

To develop N.M.A.M. Institute of Technology, Nitte, as Centre of Excellence by imparting Quality Education to generate Competent, Skilled and Humane Manpower to face emerging Scientific, Technological, Managerial and Social Challenges with Credibility, Integrity, Ethics and Social Concern.

M. Tech. Regulations and Curriculum

Batch 2022 – 2024

With Scheme of Teaching & Examination

REGULATIONS: 2022 for M. Tech. Programs (Academic year 2022-23)

COMMON TO ALL M.Tech. DEGREE PROGRAMS CHOICE BASED CREDIT SYSTEM (CBCS)

Key Information

Program Title	Master of Technology, abbreviated as M.Tech.			
Short description	Two-year, four semester Choice Based Credit System (CBCS) type			
	of Postgraduate Engineering Degree Program taught in English			
Program Code	M.Tech. (Computer Science and Engineering)			
Revision version	2022.01			
	These regulations may be modified from time to time as mandated			
	by the policies of the University. Revisions are to be recommended			
	by the Board of Studies for Computer Science and Engineering and			
	approved by the Academic Council.			
Effective from	12-09-2022			
Approvals	Approved by the Board of Management and Academic Council of			
	NITTE (Deemed to be University), vide notification.			
Program offered at	NMAM Institute of Technology, Nitte			
	Off Campus centre, Nitte (Deemed to be University)			
Grievance and	All disputes arising from this set of regulations shall be addressed to			
dispute resolution	the Board of Management. The decision of the Board of			
	Management is final and binding on all parties concerned. Further,			
	any legal disputes arising out of this set of regulations shall be			
	limited to jurisdiction of Courts of Mangalore only			

Contents

1.	INTRODUCTION	3
2.	DEFINITIONS OF KEYWORDS:	3
2.1	Program	4
2.2	Branch	4
2.3	Semester:	4
2.4	Academic Year	4
2.5	Course:	4
2.6	Credit	4
2.7	Audit Courses:	4
2.8	Choice Based Credit System (CBCS):	4
2.9	Course Registration:	4
2.10	Course Evaluation:	5
2.11	Continuous Internal Evaluation (CIE)	5
2.12	Semester End Examinations (SEE)	5
2.13	Make Up Examination:	5
2.14	Supplementary Examination:	5
2.15	Credit Based System (CBS):	5
2.16	Credit Representation:	5
2.17	Letter Grade:	6
2.18	Grading:	6
2.19	Grade Point (GP):	6
2.20	Passing Standards:	6
2.21	Credit Point	6
2.22	Semester Grade Point Average (SGPA)	7
2.23	Cumulative Grade Point Average (CGPA):	7
2.24	Grade Card:	7
2.25	University:	7
3.	CLAUSE	7
22N	MT1.0_DURATION AND CREDITS OF THE PROGRAM OF STUDY	7
22N	MT2.0 ELIGIBILITY FOR ADMISSION	8
22N	MT3.0 REGISTRATION:	10
22N	MT4.0COURSES:	12

22NMT5.0 INTERNSHIP/MINI PROJECT:	15
22NMT6.0 SEMINAR:	16
22NMT7.0 PROJECT WORK:	16
22NMT8.0 ATTENDANCE REQUIREMENT:	20
22NMT9.0 ADD/ DROP/ AUDIT OPTIONS:	21
22NMT10.0 ABSENCE DURING THE SEMESTER:	21
22NMT11.0 WITHDRAWAL FROM THE PROGRAM:	22
22NMT12.0 EVALUATION SYSTEM:	23
22NMT13.0 LETTER GRADES AND GRADE POINTS:	27
22NMT14.0 PROMOTION AND ELIGIBILITY:	
22NMT15.0 ELIGIBILITY FOR PASSING AND AWARD OF DEGREE:	
22NMT16.0 EVALUATION OF PERFORMANCE:	29
22NMT17.0 DEGREE REQUIREMENTS:	
22NMT18.0 TERMINATION FROM THE PROGRAM/READMISSION:	
22NMT19.0 GRADUATION REQUIREMENTS AND CONVOCATION:	31
22NMT20.0 AWARD OF CLASS, PRIZES, MEDALS & RANKS:	32
22NMT21.0 CONDUCT AND DISCIPLINE:	

1. INTRODUCTION:

- 1.1 The general regulations are common to all Degree of Master of Technology Program under Outcome Based Education (OBE) and Choice Based Credit System (CBCS) conducted by Nitte (Deemed to be University), at the NMAM Institute of Technology, Nitte off Campus Centre and shall be called "Nitte(DU) Regulations for M.Tech.- 2022".
- **1.2** The provisions contained in this set of regulations govern the policies and procedures on the Registration of students, imparting Instructions of course, conducting of the examination and evaluation and certification of students' performance and all amendments there to leading to the said degree program(s)
- 1.3 This set of Regulations, on approval by the Academic Council and Governing Council, shall supersede all the corresponding earlier sets of regulations of the M.Tech. Degree program (of Nitte (DU)) along with all the amendments thereto, and shall be binding on all students undergoing M.Tech. Degree Program (s) (Choice Based Credit System) conducted at the NMAMIT, Nitte with effect from its date of approval and is applicable for students admitted to 1st year after September 2022. This set of regulations may evolve and get modified or changed through appropriate approvals from the Academic Council / Governing Council from time to time, and shall be binding on all stake holders, (the Students, Faculty, Staff of Departments of NMAMIT, Nitte). The decision of the Academic Council/ Governing Council shall be final and binding.
- **1.4** In order to guarantee fairness and justice to the parties concerned in view of the periodic evolutionary refinements, any specific issues or matters of concern shall be addressed separately, by the appropriate authorities, as and when found necessary.
- **1.5** The Academic Council may consider any issues or matters of Concern relating to any or all the academic activities of the NMAMIT courses for appropriate action, irrespective of whether a reference is made here in this set of Regulations or otherwise.
- 1.6 The course shall be called Master of Technology program abbreviated as M.Tech. (subject of specialization) Choice Based Credit System.
- 2. **DEFINITIONS OF KEYWORDS:** The following are the definitions/descriptions that have been followed for the different terms used in the Regulations of M.Tech. Programs:

- **2.1 Program:** Is an educational program in a particular stream/branch of Engineering/branch of specialization leading to award of Degree. It involves events/activities, comprising of lectures/ tutorials/ laboratory work/ field work, outreach activities/ project work/ vocational training/ viva/ seminars/ Internship/ assignments/ presentations/ self-study etc., or a combination of some of these.
- **2.2 Branch:** Means Specialization or discipline of M. Tech Degree Program, like Electrical Vehicle Technology, Structural Engineering, Machine Design, etc.
- **2.3 Semester:** Refers to one of the two sessions of an academic year (vide: serial number 4), each session being of sixteen weeks duration (with working days greater than or equal to 90). The odd semester may be scheduled from August/September and even semester from February/March of the year.
- **2.4** Academic Year: Refers to the sessions of two consecutive semesters (odd followed by an even) including periods of vacation.
- 2.5 Course: Refers to usually referred to as 'subjects' and is a component of a program. All Courses need not carry the same credit weightage. The Courses should define learning objectives and learning outcomes. A Course may be designed to comprise lectures/ tutorials/ laboratory work/ field work/ outreach activities/ project work/ vocational training/ viva/ seminars/ term papers/ assignments/ presentations/ selfstudy etc.. or a combination of some of these.
- **2.6 Credit:** Refers to a unit by which the Course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of lecture or two hours of laboratory/ practical Courses/ tutorials/ fieldwork per week etc.
- 2.7 Audit Courses: Means Knowledge/ Skill enhancing Courses without the benefit of credit for a Course.
- **2.8 Choice Based Credit System (CBCS):** Refers to customizing the Course work, through Core, Elective and soft skill Courses, to provide necessary support for the students to achieve their goals.
- **2.9 Course Registration:** Refers to formal registration for the Courses of a semester (Credits) by every student under the supervision of a Faculty Advisor (also called Mentor, Counsellor etc.,) in each Semester for the Institution to maintain proper record.

- **2.10 Course Evaluation:** Means Continuous Internal Evaluation (CIE) and Semester End Examinations (SEE) to constitute the major evaluations prescribed for each Course. CIE and SEE to carry 50 % and 50 % respectively, to enable each Course to be evaluated for 100 marks, irrespective of its Credits.
- **2.11 Continuous Internal Evaluation (CIE):** Refers to evaluation of students' achievement in the learning process. CIE shall be by the Course Instructor and includes tests, homework, problem solving, group discussion, quiz, mini-project and seminar throughout the Semester, with weightage for the different components being fixed at the University level.
- **2.12 Semester End Examinations (SEE):** Refers to examination conducted at the University level covering the entire Course Syllabus. For this purpose, Syllabi to be modularized and SEE questions to be set from each module, with a choice confined to the concerned module only. SEE is also termed as university examination.
- **2.13 Make Up Examination:** Refers to examination conducted for the candidates who has a CIE>=35 marks and may have missed to attend the SEE covering the entire course syllabus. The standard of Make Up Examination is same as that of the SEE.
- **2.14 Supplementary Examination:** Refers to the examination conducted to assist slow learners and/or failed students through make up courses for a duration of 8 weeks. This comprises of both the CIE & SEE and will be conducted after the completion of First year M.Tech. even semester.
- **2.15 Credit Based System (CBS):** Refers to quantification of Course work, after a student completes teaching learning process, followed by passing in both CIE and SEE. Under CBS, the requirement for awarding Degree is prescribed in terms of total number of credits to be earned by the students.
- **2.16 Credit Representation:** Refers to Credit Values for different academic activities considered, as per the Table.1. Credits for seminar, project phases, project viva–voce and internship shall be as specified in the Scheme of Teaching and Examination.

Table 1: Credit Values				
Theory/Lectures (L) (hours/week/Semester)	Tutorials (T) (hours/week/ Semester)	Laboratory /Practical (P) (hours/week/ Semester)	Credits (L: T:P)	Total Credits
4	0	0	4:0:0	4
3	0	0	3:0:0	3
2	2	0	2:1:0	3
2	0	2	2:0:1	3
2	2	2	2:1:1	4
0	0	2	0:0:1	1
NOTE: Activities like, p	practical training,	study tour and parti	cipation in	Guest

lectures not to carry any credits.

- **2.17 Letter Grade:** It is an index of the performance of students in a said Course. Grades are denoted by letters O, A+, A, B+, B, C and F.
- **2.18 Grading:** Grade refers to qualitative measure of achievement of a student in each Course, based on the percentage of marks secured in (CIE+SEE). Grading is done by Absolute Grading. The rubric attached to letter grades are as follows:

Letter	0	A+	А	B+	В	C	F
Grade							
Academic	Outstanding	Excellent	Very	Good	Above	Average	Fail
Level			Good		Average		

2.19 Grade Point (GP): Refers to a numerical weightage allotted to each letter grade on a 10-point scale as under.

Letter Grade and corresponding Grade Points on a typical 10 – Point scale							
Letter Grade	0	A+	А	B+	В	С	F
Grade Point	10	09	08	07	06	05	00

- **2.20 Passing Standards:** Refers to passing a Course only when getting GP greater than or equal to 05 (as per serial number 2.20).
- **2.21** Credit Point: Is the product of grade point (GP) and number of credits for a Course i.e., Credit points $CrP = GP \times Credits$ for the Course.

- **2.22** Semester Grade Point Average (SGPA): Refers to a measure of academic performance of student/s in a semester. It is the ratio of total credit points secured by a student in various Courses of a semester and the total Course credits taken during that semester.
- **2.23** Cumulative Grade Point Average (CGPA): Is a measure of overall cumulative performance of a student over all semesters. The CGPA is the ratio of total credit points earned by a student in various Courses in all semesters and the sum of the total credits of all Courses in all the semesters. It is expressed up to two decimal places.
- **2.24 Grade Card:** Refers to a certificate showing the grades earned by a student. A grade card shall be issued to all the registered students after every semester. The grade card will display the program details (Course code, title, number of credits, grades secured) along with SGPA of that semester and CGPA earned till that semester.
- **2.25** University: Nitte (Deemed to be University), Mangalore. NMAM Institute of Technology is an off-campus centre of Nitte (DU) and located at Nitte.

3. CLAU	SE				
CLAUSE	PARTICULARS				
22NMT1.0	DURATION AND CREDITS OF THE PROGRAM OF STUDY				
	There shall be one category of program: Full-time Program (FT)				
	Full-time Program: The Program shall extend over a period of four semesters				
	(2 years).				
	First Semester:				
	i) 16 weeks – Class Work according to the scheme.				
	ii) 4 weeks – Revision holidays and examinations				
	iii) 2 weeks – Vacation				
	Second Semester:				
	i) 16 weeks – Class Work according to the scheme				
	ii) 4 weeks – Revision holidays and examinations.				
	Summer Semester/Vacation				
	i) 4 weeks — Class work, Examination & Display of Grades				
	Third Semester: 20 weeks				
	i) 8 weeks — Industrial Training/Mini Project				
	ii) 12 weeks — Project Part-I				

	— Industrial Training/Mini Project evaluation, Seminar on Special				
	Topic Evaluation & Project Part-I Evaluation				
	Fourth Semester: 24 weeks				
	i) 22 weeks — Project Part-II				
	ii) 2 weeks – Submission, viva -ve	oce			
	Prescribed Number of Credits for th	ne Program: 80			
	The number of credits to be completed	for the award of Degree shall be 80.			
22NMT1.1	M.Tech Degree Programs are offered	in the following specialization and the			
	respective program hosting departments	are listed below:			
	Program	Department			
	i) Computer Science & Engineering	Computer Science & Engineering			
	ii) Constructional Technology	Civil Engineering			
	iii) Structural Engineering	Civil Engineering			
	iv) VLSI Design & Embedded	Electronics and Communication			
	Systems	Engineering			
	v) Machine Design	Mechanical Engineering			
	vi) Energy Systems Engineering Mechanical Engineering				
	vii) Cyber security Computer Science Engineering				
	viii) Electric Vehicle Technology Electrical and Electronics Engineering				
	The provisions of these Regulations shall be applicable to any new				
	specialization that may be introduced from time to time and appended to the				
	above list.				
22NMT1.2	Maximum Duration for Program Completion:				
	A full-time candidate shall be allowed	a maximum duration of 4 years from the			
	I semester of admission to become eligible for the award of master's degree,				
	failing which he/she may discontinue of register once again as a fresh candidate				
	to I semester of the program.				
22NMT2.0	ELIGIBILITY FOR ADMISSION				
	(As per the Government orders issued	from time to time):			
	Admission to I year/ I semester Maste	r of Technology Program shall be open			
	to all the candidates who have passed l	B.E./ B. Tech. Examinations (in relevant			
	field) or any other recognized Univer-	ersity/ Institution. AMIE in respective			

	branches shall be equivalent to B.E./ B. Tech. Programs for admission to
	M.Tech. The decision of the equivalence committee shall be the final in
	establishing the eligibility of candidates for a particular Program.
	For the foreign Degrees, Equivalence certificate from the Association of Indian
	Universities shall be a must.
22NMT2.1	Admission to M.Tech. Program shall be open to the candidates who have
	passed the prescribed qualifying examination with not less than 50% of the
	marks in the aggregate of all the years of the Degree examination. Rounding
	off percentage secured in qualifying examination is not permissible.
22NMT2.2	For admissions under GATE/ NUCAT qualification
	The candidates should be GATE qualified or should have appeared for the
	NUCAT Entrance Examination conducted by Nitte (Deemed to be University)
	[Nitte (DU)]
22NMT2.3	For admissions under Sponsored Quota:
	The candidates should be GATE qualified or should have appeared for the
	NUCAT Entrance Examination conducted by Nitte (DU)
22NMT2.4	The candidates, who are qualified in the GATE Examination for the
	appropriate branch of engineering, shall be given priority. They are exempted
	from taking NUCAT Entrance Examination.
	In case a GATE qualified Candidate appears for entrance examination and
	become qualified to claim a seat under entrance examination quota, he/she will
	be considered in the order of merit along with other candidates appeared for
	the entrance examination.
22NMT2.5	If sufficient number of GATE qualified candidates are not available, the
	remaining vacant seats shall be filled from amongst the candidates appeared
	for NUCAT Entrance Examination in the order of merit.
22NMT2.6	Engineering graduates other than the Karnataka candidates shall get their
	Eligibility verified from Nitte (DU) to seek admission to M.Tech. Program at
	NMAMIT, Nitte
22NMT2.7	Admission to vacant seats: Seats remaining vacant (unfilled), after the
	completion of admission process through GATE/NUCAT Entrance Exam, the
	remaining seats shall be filled by Candidates based on merit in the entrance
	test conducted at the Institution level. An admission Committee, consisting of

	oversee admissions				
	oversee admissions.				
22NM13.0	REGISTRATION:				
	Every student after consultin	ng his Fac	ulty-Advisor	in parent	department is
	required to register for the a	approved o	courses with	the Depar	tmental Post
	Graduate Committee (DPC	GC) of Pare	ent Departme	nt at the co	ommencement
	of each Semester on the day	s fixed for	such registr	ation and r	notified in the
	academic calendar.				
22NMT3.1	Lower and Upper Limits f	for Course	Credits Reg	gistered in	a Semester.
	Course Credit Assignment:				
	All courses comprise of spec	ific Lecture	e/ Tutorial/ Pr	actical (L-7	Γ-P) schedule.
	The course credits are fixed by	based on the	e following no	orms.	
	Lecture/Tutorials/ Practical:				
	(i) a 1-hour Lectu	ure per wee	k is assigned	1.0 Credit.	
	(ii) a 2-hour Tutor	rial session	per week is a	ssigned 1.0) Credit.
	(iii) a 2-hour Lab.	session per	week is assig	gned 1.0 cre	edits
	For example, a theory course with L-T-P schedule of 3-2-0 hours will be				
	assigned 4.0 credits.				
	A laboratory practical course with L-T-P schedule of 0-0-2 hours will be				
	assigned 1.0 credit.				
	Calculation of Contact Hou	rs / Week	- A Typical	Example	
	Typical Academic Load (I	& II Seme	ster)		
	No. of Courses	LTP	Credits	Total	Contact
			Per course	Credits	Hours
					per Week
	2 Lecture Courses	4-0-0	04	08	08
	2 Lab Courses	0-0-2	01	02	04
	1 Research based Course	0-0-4	02	02	04
	3 Elective Courses	3-0-0	03	09	09
	1 Audit Course	2-0-0	0	0	02
	Total: 9 Courses			21	27
	A student must register, as ad	vised by Fa	culty Adviso	r. between	a minimum of
	16 credits and up to a Ma	ximum of	28 credits 4	However t	he minimum/
			20 0100105. 1	10.00001, t	

	maximum Credit limit can be relaxed by the Dean (Academic) on the
	recommendations of the DPGC, only under extremely exceptional
	circumstances.
22NMT3.2	Mandatory Pre-Registration for higher semester:
	In order to facilitate proper planning of the academic activities of the Semester,
	it is necessary for the students to declare their intention to register for courses
	of higher semesters (2 nd and above) at least two weeks before the end of the
	current semester choosing the courses offered by each department in the next
	higher semester which is displayed on the Departmental Notice Board at least
	4 weeks prior to the last working day of the semester. Students who fail to
	register on or before the specified date will have to pay a late fee. Registration
	in absentia is allowed only in exceptional cases with the permission of the Dean
	(Academic).
	Registration to a higher semester is allowed only if the student fulfills the
	following conditions-
	i) Satisfied all the academic requirements to continue with the program of
	studies without termination
	ii) Cleared all institute, hostel and library dues and fines, if any, of the
	previous semester.
	iii) Paid all required advance payments of the Institute and the hostel for the
	current semester.
	Has not been debarred from registering on any specific grounds by the Institute.
22NMT3.3	Course Pre-Requisites:
	In order for a student to register for some course(s), it may be required either
	to have completed satisfactorily or to have prior earned credits in some
	specified course(s). In such instances, the DPGC shall specify clearly, any such
	course pre-requisites, as part of the curriculum.
22NMT3.4	Students who do not register before the dead line day of registration may be
	permitted LATE Registration up to the notified day in academic calendar on
	payment of late fee.
22NMT3.5	REGISTRATION in ABSENTIA will be allowed only in exceptional cases on
	the recommendation of DPGC through the authorized representative of the
	student.

22NMT3.6	Medium of Instruction/Evaluation/etc. shall be English.		
22NMT4.0	COURSES:		
	The curriculum of the Program shall be any combination of following type of		
	courses:		
	i) Professional Core Courses (PCC) - relevant to the chosen		
	specialization/ branch [May be split into Hard (no choice) and Soft (with		
	choice), if required]. The core course is to be compulsorily studied by a		
	student and is mandatory to complete the requirements of a program in a		
	said discipline of study.		
	ii) Professional Electives Courses (PEC) - relevant to the chosen		
	specialization/ branch: these are the courses, which can be chosen from		
	the pool of papers. It shall be supportive to the discipline/ providing		
	extended scope/enabling an exposure to some other discipline / domain		
	/ nurturing student skills.		
	iii) Research Experience Through Practice-I and Research Experience		
	Through Practice-II		
	iv) Project Work		
	v) Seminar		
	vi) Audit Courses (AC):		
	a) The Audit course can be any credit course offered by the program to		
	which the candidate is admitted (other than the courses considered for		
	completing the prescribed program credits) or other programs offered		
	in the institution, where the student is studying.		
	b) The students are required to register for one audit course during I and		
	II semesters. Students who have registered to audit the courses,		
	considered on par with students registered to the same course for credit,		
	must satisfy attendance and CIE requirements. However, they need not		
	have to appear for SEE.		
	c) Registration for any audit course shall be completed at the beginning of I		
	and II semesters. The Department should intimate the Controller of		
	Examination about the registration at the beginning of the semester and		
	obtain a formal approval for inclusion of the audit course/s in the Grade		
	card issued to the students		

	vii) Internship/ Mini Project: Pref	erably a	t an industry/ R&D
	organization/IT company/ Governm	nent orga	nization of significant
	repute or at the Research Centre of	parent In	stitution for a specified
	period mentioned in Scheme of Teach	ning and E	Examination.
22NMT4.1	Program Structure:		
	The number of credits to be registered in a s	semester i	s between 16 and 28
	Minimum Credit Requirement for the M.Te	ech. Degre	e is 80.
	The total course package for an M.Tech. De	gree Progi	ram will typically consist
	of the following components.		
	Course type	Range	Suggested Credits
		%	Suggested Cleans
	i) Program Core Courses	20 - 25	20
	ii) Program Elective Courses	18 - 20	15
	iii) Elective Courses (MOOCS)	4	03
	iv) Industrial Internship/Research	10	08
	Internship/Mini Project		
	v) Project	35	28
	vi) Seminar	2.5	02
	vii) Research Experience Through	5	04
	Practice		
	viii)Audit courses (two courses)	-	-
	Total credits		80
	The Department Post Graduate Comm	ittee (DP	GC) will discuss and
	recommend the exact credits offered f	for the p	rogram for the above
	components, the semester-wise distribution	among the	em, as well as the syllabi
	of all postgraduate courses offered by the de	epartment	from time to time before
	sending the same to the Board of Studies (E	BOS).	
	The BOS will consider the proposals f	from the	departments and make
	recommendations to the Academic Council	for consid	deration and approval.
	Mandatory Learning Courses:		
	These are courses that must be completed by	y the stude	ent at appropriate time as
	suggested by the Faculty Adviser or the DI	PGC. Cou	rses that come under the
	category are as following:		
			Page 13

Industrial Training:

This is a 08-credit course. A full-time student will complete the Industrial Training (or a Mini Project) at appropriate time stipulated by DPGC and register for it in the following Semester and shall also submit a bound copy of training report certified by the authority of Training Organization. The duration and the details, including the assessment scheme, shall be decided by the faculty advisor, with approval from DPGC.

Seminar:

This also carries 2-credits to be completed at appropriate time stipulated by DPGC. The student will make presentations on topics of academic interest, as suggested by DPGC.

Research Experience through Practice-I and Research Experience through Practice-II:

- Research Experience through Practice-I and II are 2-credit courses in the first and second semesters respectively.
- The student will work under a faculty supervisor approved by the DPGC and submits a research proposal at the end of the first semester which is evaluated jointly by the faculty supervisor and a co-examiner.
- Students shall be offered inputs like how to conduct a literature survey, how to identify a research problem, how to write a research paper, research report, research proposal, and systematic way of conducting research etc.
- Department specific/PG Program specific skill sets required for carrying out a research work may be offered to the students like software tools for system/device simulation and analysis, software/ hardware tools for signal acquisition, data processing, control simulation, Testing/measuring equipment used in research and Testing/measuring procedure.
- At the end of Research Experience through Practice-I in the first semester,
 M. Tech. students should be able to identify a research problem, with clear objectives and methodologies backed by extensive literature review.
- Two internal examiners will evaluate the Research Experience through Practice-I out of which one will be the guide and the other examiner will a faculty member who is having expertise in the research area of the student

	being evaluated. The research proposal report and the research proposal
	presentation are evaluated for 100 marks in the first semester.
	• The student will work on the proposed research in the second semester and
	submit a research paper at the end of the second semester which is evaluated
	jointly by the faculty supervisor and a co-examiner.
	• In the second semester, the students are expected to carry out Mathematical
	modelling / Design calculations / computer simulations / Preliminary
	experimentation / testing of the research problems identified during
	Research Experience through Practice-I carried out in the first semester. At
	the end of the second semester, students are expected to write a full research
	paper based on the Mathematical modelling/ Design calculations/computer
	simulations/Preliminary experimentation/testing carried out during second
	semester.
	The research paper submitted by the student and the presentation of the research
	work carried out is evaluated for 100 marks in the second semester.
22NMT5.0	INTERNSHIP/MINI PROJECT:
	The student shall undergo Internship/Mini Project as per the Scheme of
	Teaching and Examination.
	1. The internship can be carried out in any industry/R&D
	Organization/Research Institute/Institute of national repute/R&D Centre
	of Parent Institute.
	2. The Department/college shall nominate a faculty to facilitate, guide and
	supervise students under internship.
	3. The students shall report the progress of the internship/Mini Project to the
	internal guide in regular intervals and seek his/her advice.
	4. The Internship shall be completed during the period specified in Scheme
	of Teaching and Examination.
	5. After completion of Internship/mini project, students shall submit a report
	to the Head of the Department with the approval of both internal and
	external guides and with the approval of internal guide if the
	Internship/Mini-Project is carried out in the Institute.

	6. The Internship/Mini Project will be evaluated jointly by two internal
	examiners appointed by the Head of the Department/Controller of
	Examination.
	7. The Internship/Mini Project report and the presentation by the student will
	be evaluated for 50 marks each immediately after completion of the
	Internship/Mini Project.
	The students are permitted to carry out the internship anywhere in India or
	Abroad. The Institution will not provide any kind of Financial Assistance to
	any student for Internship/Mini Project and for the conduct of Viva-Voce on
	internship.
22NMT5.1	Failing to undergo Internship/Mini Project:
	Securing a pass grade in Internship/Mini Project is mandatory as a partial
	requirement for the award of Degree.
	Internship/Mini Project Securing a pass grade in Internship/Mini Project is
	mandatory. If any student fails to undergo/complete the Internship/Mini
	Project, he/she shall be considered as fail in that Course.
22NMT6.0	SEMINAR:
	Securing a pass grade in Seminar is mandatory as a partial requirement for the
	award of Degree.
	i) Each candidate shall deliver seminar as per the Scheme of Teaching and
	Examination on the topics chosen from the relevant fields for about 30
	minutes.
	The Head of the Department shall make arrangements for conducting seminars
	through concerned faculty members of the department. The Panel of Examiners
	constituted for the purpose by the Head of the Department shall award the CIE
	marks for the seminar.
22NMT7.0	PROJECT WORK:
	Securing a pass grade in Project Work is mandatory as a partial requirement
	for the award of Degree.
	Project work shall be on individual basis.

Project Part-I and Part-II:

Project Part-I: (In third Semester)

The duration of the Project Part-I is of 12 weeks as notified in the academic calendar. The evaluation of the Project Part-I will be done during the end of third semester.

Each department will prepare the Panel of Examiners in advance and also prepare the Project Part-I evaluation schedule indicating the names of the students, their USN, Title of the Project, Name of the Examiners, and time and Venue of the evaluation which will be submitted to the Controller of Examination Office in advance.

Project Part-I evaluation will be done by two internal Examiners, one of them will be the Guide and other is preferably one of the experts in the area of PG Project being evaluated.

The mark distribution of Project Phase-I evaluation is: 100 marks for report and 100 marks for presentation jointly awarded by the both the examiners.

Project Part-II: (In the fourth Semester)

The total duration of Project Part-II is of 22 weeks as notified in the academic calendar. There will be two Continuous Internal Evaluation of Project Part-II in fourth semester followed by Semester End Evaluation of the Project Phase-II, namely, Project Progress Evaluation-I (PPE-I), Project Progress Evaluation -II(PPE-II) and SEE.

The same Panel of Examiners which was formed during Project Part-I evaluation is to be continued for the Project Progress Evaluation in the fourth semester.

PPE-I and PPE-II will be scheduled as per the academic calendar and will be evaluated for 100 marks each (50 marks for report and 50 marks for presentation jointly conducted by the two internal examiners).

Each department will prepare the Panel of Examiners in advance and also prepare the Project Part-II Project Progress Evaluation Schedule indicating the names of the students, their USN, Title of the Project, Name of the Examiners, and time and Venue of the evaluation as per the format which will be submitted to the Controller of Examination Office in advance.

	For the Off-Campus projects, the Internal Guide should visit the organization
	in which the M.Tech Student is carrying out his Project at least once during
	the project term.
	The candidate shall submit a soft copy of the dissertation work to the Institute.
	The soft copy of the dissertation should contain the entire Dissertation in
	monolithic form as a PDF file (not separate chapters).
	The Guide, after checking the report for completeness shall check the report
	for Plagiarism content. The allowable plagiarism index is less than or equal to
	25%. If the check indicates a plagiarism index greater than 25%, the guide
	should advice the student to resubmit the dissertation after modifying the
	report. The report has to be once again checked for the plagiarism content and
	the signed hard copy of the Plagiarism Report along with the two hard copies
	of the dissertation is to be submitted to the Head of the Institution through the
	Head of the Department. The dissertation will be evaluated by two examiners,
	one of the examiners shall be the Guide of the candidate and the other examiner
	shall be an external expert in the area of the dissertation being evaluated.
	The guide shall submit panel of two approved external examiners to the office
	of the Controller of Examination through the head of the Department. The
	Controller of Examination will randomly select one of the external examiners
	and invites him/her formally for the evaluation of the dissertation and Viva-
	Voce examination giving sufficient time for the external examiner for reading
	the dissertation.
22NMT7.1	The dissertation will be evaluated by two examiners, one of the examiners shall
	be the guide of the candidate and the other examiner shall be preferably an
	external expert in the area of the dissertation being evaluated. The evaluation
	of the dissertation shall be made independently by each examiner.
22NMT7.2	Examiners shall evaluate the dissertation normally within a period of not more
	than two weeks from the date of receipt of dissertation through email.
22NMT7.3	The examiners shall independently submit the marks for the dissertation during
	the viva-voce examination date
22NMT7.4	Sum of the marks awarded by the two examiners shall be the final evaluation
	marks for the Dissertation.

22NMT7.5	(a) Viva-voce examination of the candidate shall be conducted, if the
	dissertation work and the reports are accepted by the external examiner.
	(b) If the external examiner finds that the dissertation work is not up to the
	expected standard and the minimum passing marks cannot be awarded, the
	dissertation shall not be accepted for SEE.
	(c) If the dissertation is rejected during the Project Part II, then the Second
	Examiner (external) will be appointed by the COE against whom the
	candidate has to re-present the same dissertation. The decision of the
	Second Examiner (external) will be final.
	If the second examiner (external) accepts the dissertation, then the viva-voce
	examination of the candidate shall be conducted as per the norms. If the second
	examiner (external) rejects the dissertation, then the student has to take an
	extension for a minimum period of 3 months and re-work on the project. After
	the completion of the extension period, viva-voce examination of the candidate
	shall be conducted as per the norms, if the dissertation work is accepted by the
	external examiner.
22NMT7.6	The candidate, whose dissertation is rejected, can rework on the same topic or
	choose another topic of dissertation under the same Guide or new Guide if
	necessary. In such an event, the report shall be submitted within four years from
	the date of admission to the Program.
22NMT7.7	Viva-voce examination of the candidate shall be conducted jointly by the
	external examiner and internal examiner/ guide at a mutually convenient date.
22NMT7.8	The relative weightages for the evaluation of dissertation and the performance
	at the viva-voce shall be as per the scheme of teaching and examination.
22NMT7.9	The marks awarded by both the Examiners at the viva-voce Examination shall
	be sent jointly to the office of Controller of Examination immediately after the
	examination.
22NMT7.10	Examination fee as fixed from time to time by the Institute for evaluation of
	dissertation report and conduct of viva-voce shall be remitted to the Institute as
	per the instructions of Dean-Academics, from time to time.
22NMT7.11	The candidates who fail to submit the dissertation work within the stipulated
	time have to apply for the extension of the Project duration through the Guide

	and the head of the department to the Office of the Controller of Examination.
	Such candidate is not eligible to be considered for the award of rank.
22NMT8.0	ATTENDANCE REQUIREMENT:
	1. Each semester is considered as a unit and the candidate has to put in a
	minimum attendance of 85% in each subject with a provision of
	condoning 10% of the attendance by Principal for reasons such as medical
	grounds, participation in University level sports, cultural activities,
	seminars, workshops and paper presentation etc.
	2. The basis for the calculation of the attendance shall be the period of term
	prescribed by the institution in its calendar of events. For the first
	semester students, the same is reckoned from the date of admission to the
	course
	3. The students shall be informed about their attendance position in the first
	week of every month by the College so that the students shall be cautioned
	to make up the shortage.
	4. The head of the department shall notify regularly, the list of such
	candidates who fall short of attendance. The list of the candidates falling
	short of attendance shall be sent to the Principal with a copy to Controller
	of Examinations.
	5. A candidate having shortage of attendance (<75%) in any course(s)
	registered shall not be allowed to appear for SEE of such course(s). Such
	students will be awarded 'N' grade in these courses.
	6. He/she shall have to repeat those course(s) with 'N' grade and shall re-
	register for the same course(s) core or elective, as the case may be when
	the particular course is offered next either in a main (odd/even) or summer
	semester.
	7. If a candidate, for any reason, discontinues the course in the middle he/she
	may be permitted to register to continue the course along with subsequent
	batch, subject to the condition that he/she shall complete the class work,
	lab work and seminar including the submission of dissertation within
	maximum stipulated period. Such candidate is not eligible to be
	considered for the award of rank.

22NMT9.0	ADD/ DROP/ AUDIT OPTIONS:
	1. ADD-option: A student has the option to ADD courses for registration
	till the date specified for late registration.
	2. DROP-option: A student has the option to DROP courses from
	registration until one week after the mid-semester examination.
	AUDIT-option: A student can register for auditing a course, or a course can
	even be converted from credit to audit or from audit to credit, with the consent
	of faculty advisor and course instructor until one week after the mid-semester
	exam. However, CORE courses shall not be made available for audit. It is not
	mandatory for the student to go through the regular process of evaluation in an
	audit course. However, the student has to keep the minimum attendance
	requirement, as stipulated by the corresponding DPGC for getting the 'U' grade
	awarded in a course, failing which that course will not be listed in the Grade
	Card.
22NMT10.0	ABSENCE DURING THE SEMESTER:
	Leave of Absence
	(a) If the period of leave is more than two days and less than three weeks, prior
	application for leave shall have to be submitted to the Head of the
	Department concerned, with the recommendation of the Faculty-Advisor
	stating fully the reasons for the leave request along with supporting
	documents.
	It will be the responsibility of the student to intimate the course instructors,
	Head of the Department and also Chief Warden of the hostel, regarding his
	absence before availing leave.
22NMT10.1	Absence during Mid-Semester Examinations:
	A student who has been absent from a Mid-Semester Examination (MSE) due
	to illness and other contingencies may give a request for additional MSE within
	two working days of such absence to the office of the respective Head of the
	Department (HOD) with necessary supporting documents and certification
	from authorized personnel. The HOD may consider such requests depending
	on the merits of the case, may permit the additional Mid-Semester Examination
	for the concerned student.

22NMT10.2	Absence during Semester End Examination:
	In case of absence for a Semester End Examination, on medical grounds or
	other special circumstances the student can apply for 'I' grade in that course
	with necessary supporting documents and certifications by authorized
	personnel to the Controller of Examination through Chairman of The
	Department. The Controller of Examination may consider the request
	depending on the merits of the case and permit the make-up Semester End
	Examination for the concerned student. The student may subsequently
	complete all course requirements within the date stipulated by DPGC (which
	may be extended till first week of next semester under special circumstances)
	and 'I' grade will then be converted to an appropriate letter grade. If such an
	application for the 'I' grade is not made by the student, then a letter grade will
	be awarded based on his in-semester performance.
22NMT11.0	WITHDRAWAL FROM THE PROGRAM:
	Temporary Withdrawal: A student who has been admitted to a Post Graduate
	Degree program of the College may be permitted to withdraw temporarily, for
	a period of one semester or more on the grounds of prolonged illness or grave
	calamity in the family etc. The student should abide by the applicable rules and
	regulations of the college/University at the time of Temporary Withdrawal.
22NMT11.1	Permanent Withdrawal:
	Any student who withdraws admission before the closing date of admission
	for the Academic Session is eligible for the refund of the deposits only. Fees
	once paid will not be refunded on any account.
	Once the admission for the year is closed, the following conditions govern
	withdrawal of admissions:
	a) A student who wants to leave the College for good, will be permitted to do
	so (and can take Transfer Certificate from the College, if needed), only after
	remitting the Tuition fees as applicable for all the remaining semesters and
	clearing all other dues, if any.
	b) Those students who have received any scholarship, stipend or other forms
	of assistance from the College shall repay all such amounts in addition to those
	mentioned in (a) above.

	The decision of the Principal of the Institute regarding withdrawal of a student	
	is final and binding.	
22NMT12.0	EVALUATION SYSTEM:	
	Continuous Internal Evaluation (CIE) and Semester End Evaluation	
	(SEE)	
22NMT12.1	For all the theory and laboratory courses, the CIE marks shall be 50.	
	For Research Experience through Practice-I, Research Experience through	
	Practice-II, seminar, Industrial Training/Mini Project, the CIE marks shall be	
	100.	
	For Project Phase-I, the CIE Marks shall be 200	
	For Project Phase-II, the CIE Marks shall be 200 and for SEE 200	
22NMT12.2	CIE Marks for courses shall be based on	
	a) Tests MSE-I and MSE-II (for 30 Marks): MSE in a theory course, for 30	
	marks, shall be based on two tests covering the entire syllabus.	
	Assignments, Quizzes, Simulations, Experimentations, Mini project, oral	
	examinations, field work etc., (for 20 Marks) conducted in respective courses.	
22NMT12.3	a) An additional MSE may be conducted for those students absent for valid	
	reasons/ with prior permission.	
	b) For those students who could not score minimum required CIE marks	
	(25 marks), an additional MSE may be conducted, however the maximum CIE	
	marks shall be restricted to 25 out of 50.	
22NMT12.4	The candidates shall write the Tests in Blue Book/s. The Blue book/s and other	
	documents relating to award of CIE marks shall be preserved by the Head of	
	the Department for at least six months after the announcement of University	
	results and made available for verification at the directions of the Controller of	
	Examination.	
22NMT12.5	Every page of the CIE marks list shall bear the signatures of the concerned	
	Teacher and Head of the Department.	
22NMT12.6	The CIE marks list shall be displayed on the Notice Board and corrections, if	
	any, shall be incorporated before submitting to the office of the Controller of	
	Examination (COE).	
22NMT12.7	The CIE marks shall be sent to the office of the COE well in advance before	
	the commencement of Semester End Examinations. No corrections of the CIE	

	marks shall be entertained after the submission of marks list to the Office of
	the COE.
22NMT12.8	Candidates obtaining less than 50% of the CIE marks in any course (Theory
	/Laboratory/ Seminar/ Internship/ Project) shall not be eligible to appear for the
	Semester end examination in that course/s. In such cases, the Head of the
	Department shall arrange for the improvement of CIE marks in the course/
	Laboratory when offered in the subsequent semester subject to the maximum
	duration allowed for completion of a M.Tech. program.
22NMT12.9	Semester End Evaluation: There shall be a Semester End Examination at the
	end of each semester.
22NMT12.10	There shall be double valuation of theory papers. The theory Answer booklets
	shall be valued independently by two examiners appointed by the Controller of
	Examination.
22NMT12.11	If the difference between the marks awarded by the two examiners is not more
	than 15 per cent of the maximum marks, the marks awarded to the candidate
	shall be the average of two evaluations.
22NMT12.12	If the difference between the marks awarded by the two examiners is more than
	15 per cent of the maximum marks, the answer booklet shall be evaluated by a
	third Examiner appointed by the Controller of Examination. The average of the
	marks of nearest two valuations shall be considered as the marks secured by
	the candidate. In case, if one of the three marks falls exactly midway between
	the other two, then the highest two marks shall be taken for averaging.
22NMT12.13	Summer Semester: Summer semester is primarily to assist weak and/or
	students having N/F grade in courses, for a duration of 4 weeks after the
	completion of regular even SEE. The institute may also offer Add-on/ Audit
	Courses during this semester.
22NMT12.14	Each candidate shall obtain not less than 50% of the maximum marks
	(25 marks) prescribed for the CIE of each subject, including seminars. CIE
	Marks shall be based on assignments, tests, oral examinations and seminar
	(minimum of two are compulsory) conducted in respective subjects. The
	candidates obtaining less than 50% of the CIE marks in any subject shall not
	be eligible to appear for the SEE in that subject(s). Only in such cases, the
	Controller of Examination may arrange for reregistering the subject(s) in

	subsequent semester or may refer to DPGC for necessary remedial measures.
	The candidates shall write the Internal Assessment Test in Blue Books, and this
	shall be maintained by the Head of the Department for at least six months after
	the announcement of result and is available for verification. The CIE marks
	sheet shall bear the signature of the concerned Teacher and the Chairman of the
	Department. The CIE marks list shall be displayed on the Notice Board and
	corrections, if any, shall be incorporated before sending to the Controller of
	Examinations.
22NMT12.15	The Academic Performance Evaluation of a student shall be according to a
	Letter Grading System, based on the Class Performance Distribution.
	The Letter grades O, A+, A, B+, B, C and F indicate the level of academic
	achievement, assessed on a decimal (0-10) scale. The Letter grade awarded to
	a student in a course, for which he has registered shall be based on his
	performance in quizzes, tutorials, assignments etc., as applicable, in addition
	to two mid-semester examination and one semester end examination. The
	distribution of weightage among these components may be as follows:
	Semester End Examination (SEE) 50%
	Continuous Internal Evaluation (CIE)
	(i) Quizzes, Tutorials, Assignments etc., 20%
	(ii) Mid-semester Examination: 30%
	Any variation, other than the above distribution, requires the approval of the
	pertinent DPGC and Academic Council.
	The letter grade awarded to a student in a 0-0-P (Practical) course, is based on
	an appropriate continuous evaluation scheme that the course instructor shall
	evolve, with the approval of the pertinent DPGC.
	The course Instructor shall announce in the class, and/or display in the display
	boards or at the website, the details of the Evaluation Scheme, including the
	distribution of the weightage for each of the components, and method of
	conversion from the raw scores to the letter-grades; within the first week of the
	semester in which the course is offered, so that there are no ambiguities in
	communicating the same to all the students concerned.

22NMT12.16	The Transitional Grades 'I', 'W' and 'X' would be awarded in the following	
	cases. These would be converted into one or the other of the letter grades (O-	
	F) after the student completes the course requirements.	
	Grade "I": To a student having attendance $\geq 85\%$ and CIE $\geq 70\%$, in a course,	
	but remained absent from SEE for valid & convincing reasons acceptable to	
	the College, like:	
	i. Illness or accident, which disabled him/her from attending SEE.	
	ii. A calamity in the family at the time of SEE, which required the student	
	to be away from the College.	
	iii. However, the committee chaired by the Principal is authorized to relax	
	the requirement of CIE \geq 70% if the student is hospitalized or advised	
	long term rest after discharge from the hospital by the Doctor.	
	iv. Students who remain absent for Semester End Examinations due to valid	
	reasons and those who are absent due to health reasons are required to	
	submit the necessary documents along with their request to the	
	Controller of Examinations to write Make up Examinations within 2	
	working days of that examination for which he or she is absent, failing	
	which they will not be given permission.	
	• Grade "W": To a student having satisfactory attendance at classes but	
	withdrawing from that course before the prescribed date in a semester as	
	per Faculty Advice.	
	• Grade "X": To a student having attendance $\geq 85\%$ and CIE $\geq 70\%$, in a	
	course but SEE performance could result in a 'F' grade in the course. (No	
	"F" grade awarded in this case, but student's performance record will be	
	maintained separately).	
22NMT12.17	The Make Up Examination facility would be available to students who may	
	have missed to attend the SEE of one or more courses in a semester for valid	
	reasons and given the 'I' grade. Also, students having the 'X' grade shall also	
	be eligible to take advantage of this facility. The makeup examination would	
	be held as per dates notified in the Academic Calendar. However, it should be	
	made possible to hold a make-up examination at any other time in the semester	
	with the permission of the Academic Council of the College. In all these cases,	
	the standard of SEE would be the same as the normal SEE.	

22NMT12.18	All the 'W' grades	awarded to the	students would be	e eligible for conversion to
	the appropriate le	tter grades only	after the concern	ed students re-register for
	these courses in a	. main/summer s	semester and fulfi	l the passing standards for
	their CIE and (CII	E+SEE).		
22NMT12.19	The suggested pas	sing standards a	re CIE to have >=:	50% and CIE+SEE to have
	a grade better or at	least equal to C.	. For maintaining h	nigh standards, the students
	scoring less than 5	50% in CIE are a	advised to withdra	w and to reregister for the
	course when offer	ed next. The let	ter grade 'W' to b	e entered in the grade card
	against the subject	t and not to be ta	aken into account	while calculating SGPA &
	CGPA			
22NMT12.20	Rules for grace n	narks		
	a) Grace marks u	p to 1% of the r	naximum total ma	arks in the examination or
	10 marks whichev	ver is less shall l	be awarded to the	failed course(s), provided
	on award of such	h grace marks t	the candidate pas	ses in that course(s) and
	examination.			
	For the students v	who have secure	ed a minimum pas	ss grade in all the courses
	without any grace	e marks, there sh	nall be a provision	n to award grace marks of
	0.5% of maximu	m marks or 5	marks whichever	is less in a semester for
	improvement of C	Grade Point (GP)) in the course(s) i	registered in that semester.
	(Excluding Projec	t work and Inter	mship)	
22NMT13.0	LETTER GRAD	ES AND GRAI	DE POINTS:	
	The Institute adop	ts absolute grad	ing system wherei	in the marks are converted
	to grades, and eve	ry semester resu	lt will be declared	with semester grade point
	average (SGPA) a	and Cumulative	Grade Point Aver	rage (CGPA). The CGPA
	will be calculated	for every semes	ter, except for the	first semester.
	The grading syste	em with the lett	er grades and the	assigned range of marks
	under absolute gra	ading system are	as given below:	
	Letter Grade	Grade- Points	Raw Scores	Level of Academic
			º⁄o	Achievement
	0	10	≥90	Out standing
	A+	09	80-89	Excellent
	А	08	70-79	Very Good

		B+	07	60-69	Good			
		В	06	55-59	Above average			
		С	05	50-54	Average			
		F	00	<50	Fail			
		U			Audited			
	A	student obtainin	g Grade F in a C	ourse shall be con	sidered fail and is required	ł		
	to	to reappear in subsequent SEE. Whatever the letter grade secured by the						
	stı	udent during his	/her reappearan	nce shall be retain	ed. However, the number	r		
	of	attempts taken	to clear a Cour	rse shall be indica	ated in the grade cards	/		
	tra	anscripts.						
	Ea	arned Credits:						
	Tł	nis refers to the c	credits assigned	to the course in wl	nich a student has obtaine	d		
	an	y one of the lett	er grades O, A+	A, B+, B and C				
22NMT14.0	Pl	ROMOTION A	ND ELIGIBIL	ITY:				
22NMT14.1	Pı	romotion:						
	a)	All students ar	re promoted to the	heir next semester	or year of their program	۱,		
		irrespective of	the academic pe	erformance.				
	He	owever, for sub	mission for M.	Fech. Major Proje	ect report in 4 th semester	r,		
	stı	udent should hav	ve completed all	the courses up to	3 rd semester			
22NMT14.2	T	he mandatory	non-credit cour	rses, if any, shall	not be considered for th	e		
	av	vard of class, ca	lculation of SGI	PA and CGPA. H	owever, a pass grade (PP	')		
	in	the above cours	ses is mandatory	for the award of I	Degree.			
22NMT15.0	E	LIGIBILITY F	OR PASSING	AND AWARD O	F DEGREE:			
22NMT15.1	1.	. A student who	obtains any grad	de O to C shall be	considered as passed and	1		
	j	if a student sec	ures F grade in	any of the head	of passing, he/she has to)		
	1	reappear in that	head for SEE					
	2.	. A student shal	l be declared su	accessful at the en	nd of the program for the	Э		
	1	award of Degree	e only on obtair	ning CGPA \geq 5.00,	with none of the courses	S		
	1	remaining with	F grade.					
	In	case, the CGPA	A falls below 5.	00, the student sh	all be permitted to appea	ır		
	ag	ain for SEE for a	required number	of courses (other	than seminar and practical	I)		
	an	d times, subject	to the provision	n of University, to	make up CGPA≥5.0. Th	e		

	student should reject the SEE results of previous attempt and obtain written
	permission form the Controller of Examinations to reappear to the subsequent
	SEE.
22NMT15.2	For a pass in a theory course, the student shall secure a minimum of 40% of the
	maximum marks prescribed in the Semester End Examination and 50% of
	marks in CIE and 50% in the aggregate of CIE and SEE marks. The minimum
	passing grade in a course is C.
22NMT15.3	For a pass in Internship/ Practical/ Project/ Dissertation/ Viva-voce
	examination, a student shall secure a minimum of 50% of the maximum marks
	prescribed for the SEE in Internship/ Practical/ Project/ Dissertation/ Viva-
	voce. The minimum passing grade in a course is C.
22NMT15.4	For a pass, a candidate shall obtain a minimum of 50% of maximum marks in
	Seminar.
22NMT15.5	IV Semester full time candidates having backlog courses are permitted to
	upload the dissertation report and to appear for SEE. The IV semester grade
	card shall be released only when the candidate completes all the backlog
	courses and become eligible for the award of Degree.
22NMT15.6	Eligibility for Award of Degree:
22NMT15.6	Courses and become eligible for the award of Degree. Eligibility for Award of Degree: A student shall be declared to have completed the Degree of Master of
22NMT15.6	Courses and become eligible for the award of Degree.Eligibility for Award of Degree:A student shall be declared to have completed the Degree of Master of Technology, provided the student has undergone the stipulated course work as
22NMT15.6	Courses and become eligible for the award of Degree.Eligibility for Award of Degree:A student shall be declared to have completed the Degree of Master of Technology, provided the student has undergone the stipulated course work as per the regulations and has earned the prescribed credits, as per the scheme of
22NMT15.6	 Courses and become eligible for the award of Degree. Eligibility for Award of Degree: A student shall be declared to have completed the Degree of Master of Technology, provided the student has undergone the stipulated course work as per the regulations and has earned the prescribed credits, as per the scheme of teaching and examination of the program
22NMT15.6 22NMT16.0	Courses and become eligible for the award of Degree.Eligibility for Award of Degree:A student shall be declared to have completed the Degree of Master ofTechnology, provided the student has undergone the stipulated course work asper the regulations and has earned the prescribed credits, as per the scheme ofteaching and examination of the programEVALUATION OF PERFORMANCE:
22NMT15.6 22NMT16.0	Courses and become eligible for the award of Degree.Eligibility for Award of Degree:A student shall be declared to have completed the Degree of Master ofTechnology, provided the student has undergone the stipulated course work asper the regulations and has earned the prescribed credits, as per the scheme ofteaching and examination of the programEVALUATION OF PERFORMANCE:Computation of SGPA and CGPA
22NMT15.6 22NMT16.0	 courses and become eligible for the award of Degree. Eligibility for Award of Degree: A student shall be declared to have completed the Degree of Master of Technology, provided the student has undergone the stipulated course work as per the regulations and has earned the prescribed credits, as per the scheme of teaching and examination of the program EVALUATION OF PERFORMANCE: Computation of SGPA and CGPA SGPA and CGPA: The credit index can be used further for calculating the
22NMT15.6 22NMT16.0	 courses and become eligible for the award of Degree. Eligibility for Award of Degree: A student shall be declared to have completed the Degree of Master of Technology, provided the student has undergone the stipulated course work as per the regulations and has earned the prescribed credits, as per the scheme of teaching and examination of the program EVALUATION OF PERFORMANCE: Computation of SGPA and CGPA SGPA and CGPA: The credit index can be used further for calculating the Semester Grade Point Average (SGPA) and the Cumulative Grade Point
22NMT15.6 22NMT16.0	 courses and become eligible for the award of Degree. Eligibility for Award of Degree: A student shall be declared to have completed the Degree of Master of Technology, provided the student has undergone the stipulated course work as per the regulations and has earned the prescribed credits, as per the scheme of teaching and examination of the program EVALUATION OF PERFORMANCE: Computation of SGPA and CGPA SGPA and CGPA: The credit index can be used further for calculating the Semester Grade Point Average (SGPA) and the Cumulative Grade Point Average (CGPA), both being important academic performance indices of the
22NMT15.6 22NMT16.0	 courses and become eligible for the award of Degree. Eligibility for Award of Degree: A student shall be declared to have completed the Degree of Master of Technology, provided the student has undergone the stipulated course work as per the regulations and has earned the prescribed credits, as per the scheme of teaching and examination of the program EVALUATION OF PERFORMANCE: Computation of SGPA and CGPA SGPA and CGPA: The credit index can be used further for calculating the Semester Grade Point Average (SGPA) and the Cumulative Grade Point Average (CGPA), both being important academic performance indices of the student. While SGPA is equal to the credit index for a semester divided by the
22NMT15.6 22NMT16.0	 Courses and become eligible for the award of Degree. Eligibility for Award of Degree: A student shall be declared to have completed the Degree of Master of Technology, provided the student has undergone the stipulated course work as per the regulations and has earned the prescribed credits, as per the scheme of teaching and examination of the program EVALUATION OF PERFORMANCE: Computation of SGPA and CGPA SGPA and CGPA: The credit index can be used further for calculating the Semester Grade Point Average (SGPA) and the Cumulative Grade Point Average (CGPA), both being important academic performance indices of the student. While SGPA is equal to the credit index for a semester divided by the total number of credits registered by the student in that semester, CGPA gives
22NMT15.6 22NMT16.0	 courses and become eligible for the award of Degree. Eligibility for Award of Degree: A student shall be declared to have completed the Degree of Master of Technology, provided the student has undergone the stipulated course work as per the regulations and has earned the prescribed credits, as per the scheme of teaching and examination of the program EVALUATION OF PERFORMANCE: Computation of SGPA and CGPA SGPA and CGPA: The credit index can be used further for calculating the Semester Grade Point Average (SGPA) and the Cumulative Grade Point Average (CGPA), both being important academic performance indices of the student. While SGPA is equal to the credit index for a semester divided by the total number of credits registered by the student in that semester, CGPA gives the sum total of credit indices of all the previous semesters divided by the total
22NMT15.6 22NMT16.0	 Courses and become engible for the award of Degree. Eligibility for Award of Degree: A student shall be declared to have completed the Degree of Master of Technology, provided the student has undergone the stipulated course work as per the regulations and has earned the prescribed credits, as per the scheme of teaching and examination of the program EVALUATION OF PERFORMANCE: Computation of SGPA and CGPA SGPA and CGPA: The credit index can be used further for calculating the Semester Grade Point Average (SGPA) and the Cumulative Grade Point Average (CGPA), both being important academic performance indices of the student. While SGPA is equal to the credit index for a semester divided by the total number of credits registered by the student in that semester, CGPA gives the sum total of credit indices of all the previous semesters divided by the total number of credits registered in all these semesters. Both the equations together
22NMT15.6 22NMT16.0	 Courses and become eligible for the award of Degree. Eligibility for Award of Degree: A student shall be declared to have completed the Degree of Master of Technology, provided the student has undergone the stipulated course work as per the regulations and has earned the prescribed credits, as per the scheme of teaching and examination of the program EVALUATION OF PERFORMANCE: Computation of SGPA and CGPA SGPA and CGPA: The credit index can be used further for calculating the Semester Grade Point Average (SGPA) and the Cumulative Grade Point Average (CGPA), both being important academic performance indices of the student. While SGPA is equal to the credit index for a semester divided by the total number of credits registered by the student in that semester, CGPA gives the sum total of credit indices of all the previous semesters divided by the total number of credits registered in all these semesters. Both the equations together facilitate the declaration of academic performance of a student, at the end of a

	SGPA is computed as follows:								
	$\sum_{x \in PA} \sum_{x \in PA$								
	$\sum [(Course credits)] $ for all courses with Letter grades ncluding F in that semester								
	CGPA is computed as follows:								
	$\sum_{\substack{\sum [(Course credit)x(Grade point)]}} for all courses with Letter grades except F$								
	$\sum [(\text{Course credits})] \text{ for all courses with Letter grades} \\ except F$								
22NMT16.1	Communication of Grades:								
	• The SGPA and CGPA respectively, facilitate the declaration of academic								
	performance of a student at the end of a semester and at the end of successive								
	semesters. Both of them would be normally calculated to the second decimal								
	position, so that the CGPA, in particular, can be made use of in rank ordering								
	the students' performance in the Institute.								
	If two students get the same CGPA, the tie could be resolved by considering								
	the number of times a student has obtained higher SGPA, But, if it is still not								
	resolved, the number of times a student has obtained higher grades like O, A,								
	B etc. could be taken into account.								
22NMT16.2	B etc. could be taken into account. Appeal for Review of Grades:								
22NMT16.2	B etc. could be taken into account. Appeal for Review of Grades: a) The entire process of evaluation shall be made transparent, and a								
22NMT16.2	 B etc. could be taken into account. Appeal for Review of Grades: a) The entire process of evaluation shall be made transparent, and a mechanism for review of grade is incorporated in the evaluation system. The 								
22NMT16.2	 B etc. could be taken into account. Appeal for Review of Grades: a) The entire process of evaluation shall be made transparent, and a mechanism for review of grade is incorporated in the evaluation system. The student shall apply for the revaluation of the answer paper within the 								
22NMT16.2	 B etc. could be taken into account. Appeal for Review of Grades: a) The entire process of evaluation shall be made transparent, and a mechanism for review of grade is incorporated in the evaluation system. The student shall apply for the revaluation of the answer paper within the prescribed time after announcement of the results and by paying the prescribed 								
22NMT16.2	 B etc. could be taken into account. Appeal for Review of Grades: a) The entire process of evaluation shall be made transparent, and a mechanism for review of grade is incorporated in the evaluation system. The student shall apply for the revaluation of the answer paper within the prescribed time after announcement of the results and by paying the prescribed fees. The respective DPGC conducts the revaluation process and submits a 								
22NMT16.2	 B etc. could be taken into account. Appeal for Review of Grades: a) The entire process of evaluation shall be made transparent, and a mechanism for review of grade is incorporated in the evaluation system. The student shall apply for the revaluation of the answer paper within the prescribed time after announcement of the results and by paying the prescribed fees. The respective DPGC conducts the revaluation process and submits a report to the office of the controller. Based on the revaluation results, the 								
22NMT16.2	 B etc. could be taken into account. Appeal for Review of Grades: a) The entire process of evaluation shall be made transparent, and a mechanism for review of grade is incorporated in the evaluation system. The student shall apply for the revaluation of the answer paper within the prescribed time after announcement of the results and by paying the prescribed fees. The respective DPGC conducts the revaluation process and submits a report to the office of the controller. Based on the revaluation results, the modifications of the grades obtained if any is announced and is incorporated 								
22NMT16.2	B etc. could be taken into account. Appeal for Review of Grades: a) The entire process of evaluation shall be made transparent, and a mechanism for review of grade is incorporated in the evaluation system. The student shall apply for the revaluation of the answer paper within the prescribed time after announcement of the results and by paying the prescribed fees. The respective DPGC conducts the revaluation process and submits a report to the office of the controller. Based on the revaluation results, the modifications of the grades obtained if any is announced and is incorporated in the grade card.								
22NMT16.2	 B etc. could be taken into account. Appeal for Review of Grades: a) The entire process of evaluation shall be made transparent, and a mechanism for review of grade is incorporated in the evaluation system. The student shall apply for the revaluation of the answer paper within the prescribed time after announcement of the results and by paying the prescribed fees. The respective DPGC conducts the revaluation process and submits a report to the office of the controller. Based on the revaluation results, the modifications of the grades obtained if any is announced and is incorporated in the grade card. If the student obtains improved grade points, then the fee amount will be 								
22NMT16.2	 B etc. could be taken into account. Appeal for Review of Grades: a) The entire process of evaluation shall be made transparent, and a mechanism for review of grade is incorporated in the evaluation system. The student shall apply for the revaluation of the answer paper within the prescribed time after announcement of the results and by paying the prescribed fees. The respective DPGC conducts the revaluation process and submits a report to the office of the controller. Based on the revaluation results, the modifications of the grades obtained if any is announced and is incorporated in the grade card. If the student obtains improved grade points, then the fee amount will be refunded to the student. 								
22NMT16.2 22NMT16.3	 B etc. could be taken into account. Appeal for Review of Grades: a) The entire process of evaluation shall be made transparent, and a mechanism for review of grade is incorporated in the evaluation system. The student shall apply for the revaluation of the answer paper within the prescribed time after announcement of the results and by paying the prescribed fees. The respective DPGC conducts the revaluation process and submits a report to the office of the controller. Based on the revaluation results, the modifications of the grades obtained if any is announced and is incorporated in the grade card. If the student obtains improved grade points, then the fee amount will be refunded to the student. Grade Card: Based on the secured letter grades, grade points, SGPA and 								
22NMT16.2 22NMT16.3	 B etc. could be taken into account. Appeal for Review of Grades: a) The entire process of evaluation shall be made transparent, and a mechanism for review of grade is incorporated in the evaluation system. The student shall apply for the revaluation of the answer paper within the prescribed time after announcement of the results and by paying the prescribed fees. The respective DPGC conducts the revaluation process and submits a report to the office of the controller. Based on the revaluation results, the modifications of the grades obtained if any is announced and is incorporated in the grade card. If the student obtains improved grade points, then the fee amount will be refunded to the student. Grade Card: Based on the secured letter grades, grade points, SGPA and CGPA, a grade card for each semester shall be issued. On specific request on 								
22NMT16.2 22NMT16.3	 B etc. could be taken into account. Appeal for Review of Grades: a) The entire process of evaluation shall be made transparent, and a mechanism for review of grade is incorporated in the evaluation system. The student shall apply for the revaluation of the answer paper within the prescribed time after announcement of the results and by paying the prescribed fees. The respective DPGC conducts the revaluation process and submits a report to the office of the controller. Based on the revaluation results, the modifications of the grades obtained if any is announced and is incorporated in the grade card. If the student obtains improved grade points, then the fee amount will be refunded to the student. Grade Card: Based on the secured letter grades, grade points, SGPA and CGPA, a grade card for each semester shall be issued. On specific request on paying prescribed fee, a transcript indicating the performance in all semesters 								

22NMT16.4	Conversions of Grades into Percentage and Class Equivalence
	Conversion formula for the conversion of CGPA into percentage is given
	below:
	Percentage of marks secured, $P = CGPA$ Earned $\times 10$
	Illustration: for CGPA of 8.18:
	$P = CGPA Earned 8.18 \times 10 = 81.8 \%$
22NMT17.0	DEGREE REQUIREMENTS:
	The Degree requirements of a student for the M.Tech Degree program are as
	follows:
	1. College Requirements:
	i) Minimum Earned Credit Requirement for M.Tech. Degree is 80
	ii) Satisfactory completion of all Mandatory Learning courses
	2. Program Requirements:
	i) Minimum Earned Credit Requirements on all core courses,
	ii) Elective Courses and major project as specified by the DPGC.
	The maximum duration for a student for complying to the Degree requirements
	is 8 semesters from the date of first registration for his first semester.
22NMT18.0	TERMINATION FROM THE PROGRAM/READMISSION:
	A student shall be required to leave the College without the award of the
	Degree, under the following circumstances:
	ii) Failing to complete the degree requirements in double the duration of the
	program
	Based on disciplinary action suggested by the Academic Council/Governing
	Council.
22NMT19.0	GRADUATION REQUIREMENTS AND CONVOCATION:
	1. A student shall be declared to be eligible for the award of the Degree if he
	has
	a) Fulfilled Degree Requirements
	b) No Dues to the College, Departments, Hostels, Library Central Computer
	Centre and any other center
	c) No disciplinary action pending against him.
	2. The award of the Degree must be recommended by the Academic council
	and approved by Governing Council of Nitte (DU)

	Convocation: Degree will be awarded in person for the students who have										
	graduated during the	e preceding academic yea	r. Degrees will be awarded in	1							
	absentia to such stud	lents who are unable to at	tend the Convocation. Students	3							
	are required to apply	for the Convocation along	g with the prescribed fees, after	r							
	having satisfactoril	y completed all the De	gree requirements within the	Э							
	specified date in c	specified date in order to arrange for the award of the Degree during									
	convocation.										
22NMT20.0	AWARD OF CLAS	SS, PRIZES, MEDALS &	z RANKS:								
	• Award of Class:	Sometimes, it would be ne	ecessary to provide equivalence	;							
	of SGPA and CC	GPA with the percentages	and/or Class awarded as in the	;							
	conventional sys	tem of declaring the resul	ts of University examinations.								
	This can be do	ne by prescribing certain	specific thresholds in these	;							
	averages for Dist	inction, First Class and Sec	cond Class as described below.								
	Percen	tage Equivalence of Grade	Points (For a 10-Point Scale)								
	GPA	Percentage of	Class								
		Marks*									
	≥ 7.00	≥ 70%	Distinction								
	≥ 6.00	≥ 60%	First Class								
	5.0 ≥ GPA <6.00	50≥ Percentage < 60%	Second Class								
		Percentage	* = (GPA) x 10								
	• For the award of	of Prizes, Medals and rai	hks : The conditions stipulated	l							
	by the Donor may	be considered as per the st	atutes framed by the University	r							
	for such awards.										
	• An attempt mea	ans the appearance/regist	ration of a candidate for an	l							
	examination in o	ne or more courses either	in part or failing a particular	•							
	examination.										
	• A candidate who	fails/remaining absent (afte	er submitting exam application)	,							
	in the main exar	nination and passes one c	or more subjects/courses or all	L							
	subjects/courses	in the supplementary/	Make-up examination such	t							
	candidates shall b	be considered as taken mor	e than an attempt.								
	• Merit Certificates	s and University Medals/ w	vill be awarded on the basis of	•							
	overall CGPA, g	governed by the specific	selection criteria that may be	;							
	formulated by the	e University for such Meda	lls / Awards								

	• Only those candidates who have completed the Program and fulfilled all
	the requirements in the minimum number of years prescribed (i.e., 2 years)
	and who have passed each semester in the first attempt are eligible for the
	award of Merit Certificates and /or Ranks and University Medals.
	Candidates who pass the subjects in the supplementary/make-up examinations
	are not eligible for the award of Ranks, Medal or Merit Certificate.
22NMT21.0	CONDUCT AND DISCIPLINE:
	1. Students shall conduct themselves within and outside the premises of the
	Institute, in a manner befitting the students of an Institution of National
	Importance
	2. As per the order of Honorable Supreme Court of India, ragging in any
	form is considered as a criminal offence and is banned, any form of
	ragging will be severely dealt with.
	3. The following acts of omission/ or commission shall constitute gross
	Violation of the code of conduct and are liable to invoke disciplinary
	measures:
	a) Ragging
	b) Lack of courtesy and decorum; indecent behavior anywhere within or
	outside the campus.
	c) Willful damage or stealthy removal of any property /belongings of the
	Institute /Hostel or of fellow students/ citizens
	d) Possession, consumption or distribution of alcoholic drinks or any kind of
	hallucinogenic drugs.
	e) Mutilation or unauthorized possession of Library books.
	f) Noisy and unseemly behavior, disturbing studies of fellow Students.
	g) Hacking in computer systems (such as entering into other Person's area
	without prior permission, manipulation and/or Damage of computer
	hardware and software or any other Cybercrime etc.,).
	h) Plagiarism of any nature.
	i) Any other act of gross indiscipline as decided by the University from time
	to time.
	j) Smoking in College Campus and supari chewing.
	k) Unauthorized fund raising and promoting sales

4.	Commensurate with the gravity of offense, the punishment may be:
	reprimand, expulsion from the hostel, debarment from an examination,
	disallowing the use of certain facilities of the College, rustication for a
	specified period or even outright expulsion from the College, or even
	handing over the case to appropriate law enforcement authorities or the
	judiciary, as required by the circumstances.
	i) For an offence committed in
	a) A hostel
	b) A department or in a classroom
	c) Elsewhere,
	the Chief Warden, the Head of the Department and the Dean
	(Students Welfare), respectively, shall have the authority to
	reprimand or impose fine.
	ii) All cases involving punishment shall be reported to the Principal.
5.	Cases of adoption of unfair means and/or any malpractice in an
	examination shall be reported to the Controller of Examination.
0	Note: Students are required to be inside the examination hall 20 minutes
	before the commencement of examination. This is applicable for all
	examinations (Semester end/Supplementary/makeup) henceforth. Students
	will not be allowed inside the examination hall after the commencement,
	under any circumstances.

ထထထထ

University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru – 575 018, Karnataka India Tel: +91-824-2204300 | E-mail: info@nitte.edu.in

Scheme & Syllabus for M. Tech. (Computer Science and Engineering)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

2022-24

M. Tech. in Computer Science and Engineering

CREDIT DISTRIBUTION

No.	Course Category	Suggested Credits
1.	Professional Courses (PCC) – core	16
2.	Professional Courses (PEC) – elective	18
3.	Research Methodology & IPR/RETP	04
4.	Labs	04
5.	Project Work (UCC) (Phase 1 & 2)	08+20
6.	Audit Courses	00 (2 Audit Courses)
7.	Seminar on Current Topic (UCC)	02
8.	Internship (UCC)	08
	Total Credits to be earned:	80

Established under Section 3 of UGC Act 1956 Accredited with 'A+' Grade by NAAC

Off-Campus Center, NMAM Institute of Technology, Nitte

M.Tech. (CSE): Scheme of Teaching and Examinations 2022-24

Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2022 - 23)

1st Year Scheme

I SEMESTER												
SI. No	Cours e Type	Course Code	Course Title	ing ment	Teaching Hours /Week			Examination				edits
	c ijpc	couc		Teach Depart	Lecture	Tutorial	Practical/ Drawin	Duration in hours	CIEMarks	SEEMarks	Total Marks	Cr
					L	Т	Р					
1	PCC	22CSE101	Wireless Networks	CSE	4	0	0	3	50	50	100	4
2	PCC	22CSE102	Artificial Intelligence and Machine Learning	CSE	4	0	0	3	50	50	100	4
3	PCC	22CSE103	Machine Learning Lab	CSE	0	0	2	3	50	50	100	1
4	PCC	22CSE104	Computer Networks Lab	CSE	0	0	2	3	50	50	100	1
5	PEC	22CSE11X	Elective – I	CSE	3	0	0	3	50	50	100	3
6	PEC	22CSE12X	Elective - II	CSE	3	0	0	3	50	50	100	3
7	PEC	22CSE13X	Elective - III	CSE	3	0	0	3	50	50	100	3
8	AUDIT	22CSEAUX	Audit Course-I	CSE	2	0	0	0	0	0	0	0
9	RETP	22CSE105	Research Experience Through Practice -I	CSE	Four contact hours /week for carrying out Research and Interaction between the faculty and students		-	100	0	100	2	
				Total	19	0	4	21	450	350	800	21

II SEMESTER												
SI. No	Course Type	Course Code	Course Title	ing ment	Teac /Wee	hing Ho ek	urs		Examir	nation		edits
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Teach Depart	Lecture	Tutorial	Practical/ Drawin	Duration in hours	CIEMarks	SEEMarks	Total Marks	Cr
- 1	DCC	22665201		665	L	1	P 0	2	50	50	100	4
T	PCC	22CSE201	Architecture	CSE	4	0	0	3	50	50	100	4
2	PCC	22CSE202	Operating Systems and Virtualization	CSE	4	0	0	3	50	50	100	4
3	PCC	22CSE203	Parallel computing Lab	CSE	0	0	2	3	50	50	100	1
4	PCC	22CSE204	Operating Systems and Virtualization Lab	CSE	0	0	2	3	50	50	100	1
5	RETP	22CSE205	Research Experience Through Practice -II	CSE	Fou /we out Inter th	Four contact hours /week for carrying out Research and Interaction between the faculty and		-	100	0	100	2
6	PEC	22CSE21X	Elective – IV	CSE	3	0	0	3	50	50	100	3
7	PEC	22CSE22X	Elective – V	CSE	3	0	0	3	50	50	100	3
8	PEC	22CSE23X	Elective - VI	CSE	3	0	0	3	50	50	100	3
9	AUDIT	22CSEAUX	Audit Course-II	CSE	2	0	0	0	0	0	0	0
				Total	19	0	4	21	450	350	800	21

Note: PCC: Professional Core Course, PEC: Professional Elective Course, AUDIT (AU): Non-credit Audit course, RETP: Research Experience Through Practice. L –Lecture, T – Tutorial, P- Practical/ Drawing, CIE: Continuous Internal Evaluation, SEE: Semester End Examination.

2nd Year Scheme

	III SEMESTER											
SI	Course Type	Course Code	Course Title	ing ment	Teac /We	Teaching Hours /Week			Examination			
N o	Type	code		Teach Depart	T Theory Lecture	T Tutorial	d Practical/ Drawin	Duration in hours	CIEMarks	SEEMarks	Total Marks	Cr
1	UCC	22CSE301	Industry Internship/ Research Internship/Mini Project	CSE	8 Weeks Full Time 3 100 0 [32Hrs/week]				100	8		
2	UCC	22CSE302	Seminar on Special Topic	CSE	0	0	2	З	100	0	100	2
3	UCC	22CSE303	Project Part -1	CSE	8 W]	/eeks Ful 32Hrs/w	ll Time eek]	3	200	0	200	8
				Total	0	0	2	9	400	0	40 0	18
No	te: L –Lectu	re, T – Tutorial,	P- Practical/ Drawing, S – Se	elf Study (Compo	nent, CIE	: Continuo	ous Inte	rnal Ev	aluatio	n, SEE:	
Ser	Semester End Examination.											
Int	ernship: CIE	Evaluation is f	for 100 Marks where 50 Mark	ks is for R	eport a	nd 50 M	arks for th	ie Prese	ntatior	l		
Pro	ject Part-1	: CIE Evaluation	n is for 200 Marks where 100	Marks is	for Rep	port and	100 Marks	s for the	Prese	ntation		

			IV	SEMEST	ER							
SI. No	Cours e Type	Durs Course Course Title Teaching Hours Type Code //Week		ت Teaching Hours Examination						edits		
				Teach Depart	T Theory	L Tutorial	• Practical/ Drawin	Duration in hours	CIEMarks	SEEMarks	Total Matks	Cr
1	UCC	22CSE401	Project Part -2	CSE	20 W [4	/eeks Fi 0Hrs/w	ull Time reek]	3	200	200	400	20
				Total	0	0	0	3	200	200	400	20
Note Seme	Note: L –Lecture, T – Tutorial, P- Practical/ Drawing, S – Self Study Component, CIE: Continuous Internal Evaluation, SEE: Semester End Examination.											
Proje	ect Part-2	CIE Evaluatio	on is for 200 Marks having Projec	ct Progre	ss Evaluat	tion (PP	E)-1 and P	PE-2 ea	hch for	100 Ma	rks.	

Off-Campus Centre, Nitte - 574 110, Karkala

M.Tech (CSE): Scheme of Teaching and Examinations 2022-24 Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

	(Effective from the academic year 2022 - 23)									
ELI	ECTIVE –I	ELEC	TIVE –II	ELECTIVE –III						
22CSE111	22CSE111 Advanced		Advanced	22CSE131	Cloud					
	Database		Algorithms		computing					
	Management									
	Systems									
22CSE112	Compiler	22CSE122	Advances in	22CSE132	Business					
	Optimization &		Computer Vision		Intelligence					
	Multi-core									
	Architecture									
22CSE113	Cyber Security &	22CSE123	Natural	22CSE133	Big Data					
	Forensics		Language		Analytics					
			Processing							
22CSE114	Design Thinking	22CSE124	Security	22CSE134	Social & Web					
			Analytics		Analytics					

ELECTIVE –IV		ELECTI	VE – V	Elective - VI		
22CSE211	Distributed Operating	22CSE221	Advanced Software	22CSE231	Blockchain Technology	
	System		Testing			
22CSE212	Deep Learning	22CSE222	General	22CSE232	Speech	
			Purpose		Processing	
			Computation			
			on GPU			
22CSE213	Object	22CSE223	Analysis of	22CSE233	Software	
	Oriented		Computer		Engineering and	
	Design		Networks		Modelling	
22CSE214	Distributed	22CSE224	Image	22CSE234	Web Services	
	Systems		Processing			
			and Analysis			

Program Outcomes (PO)

	An ability to independently carry out research /investigation and development
POI	work to solve practical problems.
PO2	An ability to write and present a substantial technical report/document.
000	Students should be able to demonstrate a degree of mastery over the area as per
PO3	the specialization of the program. (The mastery should be at a level higher than
	the requirements in the appropriate bachelor program)
DO 4	Identify, formally model, define, and solve computing problems by applying the
PO4	knowledge of mathematical principles, theoretical foundations, and limits of
	computing.
DOF	An ability to apply the computational concepts and logics to address a real time
PO5	problem and to develop software systems, products and processes that are
	practically feasible to implement using modern tools
DOC	An ability to function effectively individually or as a part of a team to accomplish
P06	a stated goal.
PO7	An ability to communicate effectively with a wide range of audience.
007	Recognize the need to engage in self-governing and life-long learning by making
PO/	use of professional and ethical principles.

Program Specific Outcomes (PSO)

PSO1	Proficiency in analysis, design, development, and implementation of										
	efficient solutions for real time computational problems applying										
	problem solving skills and turn out to be employable in product-oriented										
	Industry.										
PSO2	An understanding of the modern tools, technologies, and architecture										
	of computation to carry out research to design and improve the										
	solution for any computational problems.										

WIRELESS NETWORKS

Cou	rse Code:	22CSE101	Course Type	PCC							
Tead	ching Hours/Week (L: T: P: S)	4+0+0+0	Credits	04							
Tota	al Teaching Hours	50	CIE + SEE Marks	50+50							
Cours	se Objectives:										
-	, , , , , , , , , , , , , , , , , , , 										
1. To Study the different types of Wireless services and requirements for the services,											
	basics of 802.11 Networks, MAC	fundamentals	and challenges.								
2.	2. To familiarize with 802.11 data frame, control frames, Management frames and										
	Management operations										
3.	To study security issues for wirele	ess networks st	arting with WEP, then EAP, 1	KIP, CCMP							
4.	To familiarize with 802.11 phys	sical laver- Fre	quency Hopping transmissio	n and							
	Direct sequence transmission.	,									
5.	To understand Wireless LAN/PAN	l, Wireless MA	N/WAN, Wireless Internet, T	CP in							
	Wireless domain and Wireless Ap	plication Prote	ocol								
	··	UNIT-I									
Appli	cations and Requirements of W	/ireless Servic	es: Introduction; Types of								
Servio	ces: Broadcast, Paging, Cellular T	elephony, Wir	eless Local Area Networks,								
Perso	nal Area Networks, Fixed Wireles	ss Access, Ad	Hoc Networks and Sensor								
Netw	orks;										
Requ	irements for the Services; Technica	l Challenges o	f Wireless Communications:								
Multi	path Propagation; Spectrum Limita	itions; Limited	Energy; User Mobility.								
Over\	view of 802.11 Networks - IEEE	802 Netwo	rk technology family tree,								
Nome	enclature and design, types of Netw	work, The distr	ibution system and Network								
boun	daries., 802.11 MAC fundamentals	S- Challenges	for MAC, Hidden node and								
expos	sed node problems. Basics of CSM	A/CA, Back off	procedure.								
MAC	Access Modes and Timing, Co	ntention-Base	d Access Using the DCF,								
Fragn	nentation and Reassembly, Frame	Format, Conte	ntion-Based Data								
Servio	e, Frame Processing and Bruging.			10 Hours							
		UNIT-II									
802.1	1 Framing: Generic Data Frame. Co	ontrol Frames:	Generic Structure, RTS, CTS.	10 Hours							
ACK,	PS-Poll, Beacon. Management Frar	nes: Generic S	tructure, Fixed- length								
comp	onents, Information elements: SSII	D, TIM, ERP, RS	SN. Management								
Opera	ations: Management Architecture, S	Scanning, Auth	nentication,								
Assoc	Association, Power Conservation, Timer Synchronization.										
		UNIT-III									
Secur	ity: Wired Equivalent Privacy: Ope	erations, Probl	ems with WEP. 802.1x: The	10 Hours							
Exten	sible Authentication Protocol,	EAP Method	ds, 802.1x Network Port								
Authe	entication, 802.1X on Wireless L	ANs. 802.11i:	Robust Security Networks,								
Temp	oral Key Integrity Protocol (TKIP), (Counter Mode	with CBC-MAC (CCMP),								
Robu	st Security Network (RSN) Operation	ons.									

UNIT-IV											
802.1	1 Physical Layer: Overview, the	Rac	l oib	_ink,	RF	pro	paga	ation	. Frec	quency	- 10 Hours
Норр	ing (FH) PHY: Frequency-Hop	ping	g Ti	ransı	niss	ion,	GF	SK,	PLCP	frame	ć
forma	t.Direct Sequence PHYs: Direct Se	que	nce	Tran	smis	sion	, DP	SK, P	LCP		
frame	format, Complementary Code Ke	ying	j, HR	/DS	SS P	LCP	fram	ning.			
			UNI	T-V							
Wirele	ess LAN/PAN: HIPERLAN Standa	rd:	HIPE	ERLA	N/1	, HII	PERL	AN/2	2. Blu	etooth	: 10 Hours
Trans	port Protocol Group, Bluetooth	ו Pi	ofile	es. N	Vire	less	WA	N/M	AN:	Cellula	r
Concept: Capacity Enhancement, Channel Allocation, Handoffs.											
Wirele	Wireless Internet: MobileIP: Basics, Route Optimization, Variations, handoffs, IPv6										
Advar	ncements. TCP in Wireless domain	: Tra	ditio	onal	TCP,	, Linl	k Lay	ver So	olutio	ns, Spli	t
appro	ach based solutions, end-to-end	d so	lutio	ns. \	Wire	less	Арр	olicat	ion Pı	rotocol	:
WAP	Model and protocol stack.										
Cours	Se Outcomes: At the end of the co	ours	e stı	iden	t wil	l be	able	to			
						•				•	
1.	Explain different types of Wireles	ss se	ervice	es ar	nd re	quir	eme	nts f	or the	service	es, the basics
	of 802.11 Networks, MAC fundar	men	tals	and	chal	leng	es.				
2.	Illustrate the 802.11 data frame,	con	trol f	ram	es, N	/lana	igen	nent ⁻	frame	s and N	/lanagement
	operations										
3.	Explain the security issues for wireless networks starting with WEP, then EAP, TKIP,										
	ССМР										
4.	To work with 802.11 physical lay	er- I	requ	uenc	y Ho	oppii	ng tr	ansn	nissior	n and D	Direct
	sequence transmission.										
5.	Explain the Wireless LAN/PAN, V	Virel	ess l	MAN	I/WA	۹N, ۱	Nire	less I	nterne	et, TCP	in
	Wireless domain and Wireless A	pplio	catio	n Pr	otoc	ol					
			I	I		I			T	1	
	Program Outcomes→	1	2	3	4	5	6	7	8	PSO	v↓
	↓ Course Outcomes									1	2
	1	3		1		1			1		1
	2	1		1		1			1		1
	3	1		1		1			1		1
	4	1		1		1			1		1
	5	3		1		1			1		1
	1: Lov	v, 2:	Me	diun	n, 3:	Hig	h				
TEXT	BOOKS:				<u> </u>	••		• • •	and = ::		
1.	MatthewGast,802.11Wireless Ne	etwc	orks:	The	Deti	nitiv	e Gu	iide,2	2 ^{rru} Edi	tion,	
	O'ReillyPublisher,2005.										
2.	C. Siva Ram Murthy and B S Ma	noj,	Ad F	loc	Wire	less	Net	work	s: Arcł	nitectu	es and
	Protocols,2nd edition, Pearson E	duc	atio	n, 20	05.						
3.	Andreas F. Molisch, Wireless Co	mm	unic	atior	ns,2r	nd Ec	litio	n, Joł	nn Wil	ey&So	ns, 2011.

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Course Code: 22CSE102 Course Type Po								
Teaching Hours/Week (L: T: P: S) 4+0+0+0 Credits	04							
Total Teaching Hours 50 CIE + SEE Marks	50+50							
Course Objectives:								
1. To understand the basics of AI.								
2. To work with the problem-solving issues of AI.								
3. To study planning and knowledge Engineering.								
4. To apply the AI concepts to various applications.								
5. To understand and apply the ML concepts like SVM, BBN to solve problems.								
UNIT-I								
Introduction to Artificial Intelligence and machine learning, Applications of AI.								
Examples of Various Learning Paradigms, Perspectives and Issues, Version Spaces,								
Finite and Infinite Hypothesis Spaces.								
Problem Solving: state space search and control strategies. Informed Search								
Methods: Best-First Search, Heuristic Functions, Memory Bounded Search, and								
Iterative Improvement Algorithms.								
UNIT-II								
Problem reduction and Game playing, Logic concepts and logic programming.								
Building a Knowledge Base; Properties of Good and Bad Knowledge Bases,								
Knowledge Engineering. The Electronic Circuits Domain, General Ontology, The								
Grocery Shopping World. Inference in First-Order Logic: Inference Rules Involving								
Quantifiers, An Example Proof. Generalized Modus Ponens, Forward and Backward,								
Chaining & Completeness, Resolution: A complete Interence	10 Hours							
	10 110015							
Planning A Simple Planning Agent Form Problem Solving to Planning, Planning in								
Situation Calculus Basic Representations for Planning A Partial-Order planning								
Example A partial Order planning algorithm Planning With partially Instantiated								
Operators Knowledge Engineering for Planning								
Advanced problem-solving paradigm: planning Knowledge representation	10 Hours							
UNIT-IV								
Uncertainty Measure: Probability Theory, Bayesian Belief Networks,								
Machine Learning Paradigms: Machine learning system, supervised and								
unsupervised learnings, Inductive, deductive learning, Clustering. 10 H								
UNIT-V								
Support vector Machine, case-based reasoning and learning.								
ANN: Single Layer, Multilayer. RBF, Design issues in ANN, Recurrent Network. 10 Hours								
Course Outcomes: At the end of the course student will be able to								

1.	Define Artificial intelligence and	ider	ntify	prot	olem	s foi	⁻ AI.	Chara	acteriz	ze the	sear	ch
	techniques to solve problems ar	nd re	cog	nize	the s	scop	e of	class	sical se	earch ⁻	techi	niques
2.	Define knowledge and its role in AI. Demonstrate the use of Logic in solving AI											
	problems											
3.	Demonstrate handling of uncertain knowledge and planning in AI.											
4.	Understanding of probability the	eory	and	lear	ning	me	thod	s.				
5.	Analyze the given problem to ap	ply	a su	itabl	e me	etho	d of	AI to	solve	the e	ngin	eering
	problem.											
	Program Outcomes→	1	2	3	4	5	6	7	8	PSC	D↓	
	↓ Course Outcomes									1	2	1
	1	2	3	1				1	2	1	1	1
	2	3	2	1			1		2		1	1
	3	3	2	2	2				2	2		
	4	3	2		2				2	2		
	5	3	3	2	2	2			2	1	3	
TEXT	BOOKS:											
1.	Eliane Rich, Artificial Intelligence	e, Mo	Gra	w Hi	ll Int	erna	ation	al stu	udent	editio	n, 19	84.
2.	Machine Learning, Tom Mitche,	Mc	Graw	/ Hill	, 199	97						
REFEF	RENCE BOOKS:											
1.	Mehryar Mohri, Afshin Rostamiz	zade	h, Ai	mee	t Tal	walk	ar "F	ounc	dation	of Ma	achir	ne MIT
	Press,2012.											

MACHINE LEARNING LAB													
Cou	rse	Code:	22	2CSE	103				C	ourse	Type:	PCC	Lab
Tea	chi	ng Hours/Week (L: T: P: S):	0	+0+2	2+0					С	redits:	01	
Tota	al T	eaching Hours:	2					0	CIE +	SEE I	Marks:	50+	50
Cour	se (Objectives:											
_	T												
1.	Тс	implement ML concepts.											
2.	2. To apply the ML concepts to solve problems.												
List of Experiments													
	Implement												
1	1. K-NN, NB, SVM, DT, and Clustering.												
2	2. Adaboost and Bagging using Random Forests.												
3. Logistic Regression													
4. NEURAL NETWORK Graphs for different activation functions: sigmoid, Tanh, ReLu													
		Parameter Initialization: Simpl	e ne	eural	net	work	for	Iris o	datas	et.			
5	•	DEEP LEARNING Caffe: for dif	ferei	nt de	ep l	earn	ing	arch	itectu	ires li	ke DBN	, CNN	I, RNN,
		LSTM, DSN Application:											
Cour	se (Dutcomes: At the end of the co	ours	e stu	Iden	t wil	l be	able	to				
	T												
1.	In	plement the ML concepts usin	ig py	ytho	n pro	ogra	mm	ing					
2.	D	esign solutions to given proble	m b	y usi	ng a	ppro	opria	ate c	once	pts			
		Program Outcomes→	1	2	3	4	5	6	7	8	PSO		
		↓ Course Outcomes							-		1	2	
		1	1	2	2	1			1	2			
D	D F *		3	2	2	2			1	2			
KEFE	KEN	NCE BOOKS:											
	1.	Abnishek Vijayvargiya, Machir	ne Le	earni	ng t	or P	ytho	n: A	n App	oroac	n to Ap	plied	
	Machine Learning, BPB Publications.												

Computer Networks Lab												
Cou	rse (Code:	22CSE104	Course Type:	PCC Lab							
Tea	ching	g Hours/Week (L: T: P: S):	0+0+2+0	Credits:	01							
Tota	al Te	aching Hours:	24	CIE + SEE Marks:	50+50							
Cour	se O	bjectives:										
	1											
1.	То	learn the usage of network sir	nulator NS2 for	wired and wireless networ	k topologies							
	and to extract results from trace file.											
2.	То	learn the usage of network sin	nulator NS3 for	wired and wireless networ	k topologies							
3.	То	understand the NetAnim tool	and observe th	e results on the screen.								
		Lis	t of Experimen	its								
		Conduct the following exp	eriments using	NS2:								
	Students should be able to install NS2 under Linux Platform and configure to											
	-	conduct following experim	ients		10							
	1.	Implement 5 nodes point to	point network	with a duplex link with 10	Mbps,10ms							
		and packet size of 512 byte	s from nu-n, n.	1-n2, n2-n3, n3-n4. Такіng	node no as							
source for TCP and UDP, n4 as sink, simulate traffic from 0 to 6sec TCP, from 3												
	2	Implement an Ethernet LAN	with 7 podos ar	nt throughput and packets of	dos and							
	۷.	measure performance of the	network									
	3	Implement simple FSS with t	ransmitting nor	tes in Wireless I AN and de	termine the							
	2.	performance of Network wit	h respect to tra	nsmission of packets.								
		Simulate the wireless enviror	nments for vario	ous node mobility speeds a	nd analvze							
	4.	the quality of the communic	ation in terms c	of throughput and Packet D	elivery Ratio.							
		Conduct the following exp	orimonts in NS	3 installed in Linux platfe	orm							
	1	Create a wireless network wit	h 10 nodes and	establish TCP and UDP con	munication							
		Compare the performances	s of the comm	nunication for varied bar	dwidth and							
		application layer data rate	s of the conn	numeuton for varied bar								
		Simulate the wireless enviror	ments for vario	ous node mobility speeds a	nd analyze							
	2.	the quality of the communication	ation in terms of	of throughput and Packet D	elivery Ratio.							
	2	Create a wireless ad-hoc net	work scenario a	ind check the energy consu	imption for							
	5.	varied network conditions su	ich as node mo	bility, data-rate, and netwo	rк							
		Coverage area.	stwork constic	that consists of 50 static	nodos Tho							
	4	nodes are communicating us	sing LIDP and th	nation consists of 50 static	tes Vary the							
	ч.	number of source nodes fre	m 5 to 20 with	h increment of 5 and creat	to a notwork							
		scenario Consider the varie	nii 5, to 20 Will	orithms such as AODV DCI	DV and DCP							
		to analyze the system perfor	mance Plot the	aranh hased on simulation								
		results of different routing al	aorithms and a	nalvze performances.								

- **5.** Create a wireless ad-hoc network scenario that consists of 50 mobile nodes. The nodes are communicating using TCP and the size of the packet is 250bytes. Vary the number of source nodes from 5, to 20 with increment of 5 and create a network scenario. Consider the various routing algorithms such as AODV, DSDV, and DSR to analyze the system performance. Plot the graph based on simulation results of different routing algorithms and analyze its performance.
- **6.** Create the vehicular movement file using SUMO tool. Configure the vehicular movement to ad-hoc nodes. Understand the ad-hoc network and examine the performance of the network.

Course Outcomes: At the end of the course student will be able to

- **1.** Explain the method of implementing solutions in NS2 and NS3 platforms.
- **2.** Create network simulations using the NS2 platform.
- **3.** Simulate different network algorithms using the NS3 platform.

Program Outcomes→	1	2	3	4	5	6	7	8	PSO↓	
↓ Course Outcomes									1	2
1	3		3		3			1		3
2	3		3		3			1		3
3	3		3		3			1		3

RESEARCH EXPERIENCE THROUGH PRACTICE -1										
Course Code:	22CSE105	Course Type	RETP							
Teaching Hours/Week (L: T: P: S)	0:0:4:0	Credits	2							
Total Teaching Hours	24	CIE + SEE Marks	50+50							
Teach	ing Departme	nt: CSE								
Course Objectives: The research purp	oses are									
• To foresee future problems through pursuit of truth as a "global center of excellence										
for intellectual creativity".										
• To respond to current social demands, and to contribute to the creation and										
development of scientific techno	ologies with the	e aim of realizing an afflu	ent society							
and natural environment for hur	manity.									
• At the same time, the course ain	ns to create exe	cellent educational resou	irces and an							
excellent educational environme	ent through fro	ntline research								
• To Understand professional writ	ing and comm	unication contexts and g	enres,							
analyzing quantifiable data discovered by researching, and constructing finished										
professional workplace documents.										
Individual PG Students are to be allotte	ed to the indivi	dual faculty members ba	ased on student							
area of research interest, specialization	of faculty mem	bers in the beginning of	the first semeste							
	MODULE -1									
Defining the research problem - Select	ting the proble	m - Necessity of definin	g the problem							
Techniques involved in defining the p	roblem - Impc	rtance of literature revie	ew in defining							
problem - Survey of literature - Primary	and secondary	v sources - Reviews, treat	ise, monograph							
patents - web as a source - searching t	the web - Iden	tifying gap areas from lit	terature review							
Development of working hypothesis, sy	stematic way o	of conducting								
research, write a review / research pape	er, research pro	posal, preparation of res	earch report.							
	MODULE-2									
Introduction various simulation	tools related to	Computer Science								
Use of latest software tools that	is related to th	e domain of the researcl	h.							
• Introduction to typesetting tool	(Latex).									
• At the end of the course studen	ts should subm	iit a research proposal ar	nd should							
present the idea.										
The Research proposal report prepare	d based on the	e work carried out by th	ne PG Student i							
evaluated for 50 marks and 20 minutes presentation on the research work carried out will be										
evaluated for 50 marks jointly by the examiners.										
Course Outcomes: At the end of the course student will be able to										
1. Identify and define the problem	statement base	ed on the literature revie	wed.							
2. Formulate the objectives specific	to the defined	l problem statement.								
3 . Develop the methodology for ac	hieving the ob	iectives								

Course Outcomes Mapping with Program Outcomes & PSO											
	Program Outcomes→	1	2	3	4	5	6	7	8	PS	D↓
	↓ Course Outcomes									1	2
	1	3	2	2						2	
	2	3		2						2	
	3	3		3							3
REFERENCE BOOKS:											
1.	The Undergraduate Research Handbook. Gina Wisker · 2018										

Advanced Database Management Systems

Cou	rse Code:	22CSE111	Course Type	PEC						
Teac	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03						
Tota	al Teaching Hours	40	CIE + SEE Marks	50+50						
Cours	se Objectives:									
1. To understand the different methods in storing data in disks as files.										
2.	To familiarize with different types	of Indexing.								
3.	To understand the Query evaluation	ion process and	evaluating operators.							
4.	To understand the working of a ty	ypical query op	timizer.							
5.	To Familiarize with Distributed da	tabase concep	t, distributed database Archi	itecture,						
	Query processing and optimization	on in distribute	d database							
		UNIT-I								
Stora	ge and Indexing:									
Over	view of storage and indexing - Dat	ta on External	Storage, File Organizations							
and I	ndexing, Index Data Structures, C	omparison of	File Organizations. Storing							
data: disks and files: The Memory Hierarchy, Redundant Arrays of Independent										
Disks, Disk Space Management, Buffer Manager, Buffer Replacement Policies, Files										
OT RE	cords, Page Formats, Record Form	ats. Tree-struct	ured indexing: intuition for M B_{\pm} Troos: A Dynamic							
Index	Structure Search Insert Delete Di	unlicates B+ Tr	ees in Practice Hash-based							
index	ing: Static Hashing, Extendible Hasl	hing, Linear Ha	shing, Extendable vs. Linear							
Hashi	ng	3	5.	15 Hours						
		UNIT-II								
Quer	y Evaluation:									
Overv	view of query evaluation: The Syste	m Catalog, Intr	oduction to Operator							
Evalu	ation, Algorithms for Relational Op	erations, Introc	luction to Query							
Optin	nization, Alternative Plans: A Motiv	vating Example	, What a Typical Optimizer							
Does	? External sorting: When Does a DB	BMS Sort Data?	A Simple Two-Way Merge							
Sort,	External Merge Sort, Minimizing I/	O Cost versus	Number of I/Os, Using B+							
Trees	for Sorting. Evaluating relational of	perators: The So	election Operation, General							
Selection Conditions, The Projection Operation, The Join Operation, The Set										
Opera	operations, Aggregate operations, the impact of Buffering. A typical relational query optimizer: Translating SOL Operies into Algebra. Estimating the Cost of a									
Plan										

			UNI	T-III								
Distri	buted Database Concepts:											
Distril	buted Database Concepts, Data F	Frag	men	tatic	on, F	Repli	catio	on, ai	nd All	ocatio	n	
Techr	niques for Distributed Database De	esigr	n, Ov	rvie	ew o	of Co	ncui	renc	y Cont	trol an	d	
Recov	very in Distributed Databases, C	Dver	view	/ of	Tra	nsac	tion	Ma	nagen	nent i	in	
Distril	buted Databases, Query Proce	essin	ig a	nd	Opt	timiz	atio	n in	Dist	ribute	d	
Datab	bases, Types of Distributed Databa	ise S	Syste	ms,	Dist	ribut	ed [Datab	base		-	
Archit	tectures, Distributed Catalog Mana	ager	ment	t							-	
<u> </u>	At the and of the		o ct.	. d a :-	ا:	المح	ماماه	. + c				
Cours	se Outcomes: At the end of the co	ours	e sti	laen	t WI	i be	able	e to				
1	Evaluin the different methods in	ctor	ina	data	in c	licks	ac f	loc				
<u>1</u> . 2	Illustrate with different types of I	Indo	ving v	uala	III U	IISKS	as I	ies.				
2.	Perform the Query evaluation pr		sc ar			nto o	nor	torc				
5.	Evaluation the working of a typical		55 di				pera	itors.				
4. 5	Explain the Distributed database	quer	y op	t die	zer.	utod	dat	abac	o Arch	itoctu	ro (
5.	processing and optimization in c	lictri	icep ihuta	d d	atah	ace	uat	abase		nectu	ie, Ç	uery
	processing and optimization in e	11511	butt	Julu		use						
		1	2	2	Δ	5	6	7	8	DS	01	1
		-	2	5		5	Ū		0	1	2	-
		3		2						3	2	1
	2	3		2		2				2	3	1
	3	3		2						3	_	1
	4	3		2						2	3	1
	5	3		2		2				2	3	1
TEXT	BOOKS:											-
1.	Database management systems	/ Ra	aghu	ı Rar	nakı	rishn	an, .	lohar	nnes G	Sehrke	.3rd	Edition
	Mc Graw Hill											
REFE	RENCE BOOKS:											
1.	Fundamental Database Systems	Rar	nez	Elma	asri a	and S	Shan	nkan	t B. Na	avathe	, 7th	Edition.,
	Pearson Publication											
2.	Database System Concepts A. Si	ilber	rscha	atz, F	lenr	y F.	Kort	h ,S. :	Sudars	shan S	Sixth	Edition
	McGraw Hill Publication											
	•											

COMPILER OPTIMIZATION AND MULTI-CORE ARCHITECTURES												
		000001110										
Cou	rse Code:	22CSE112	Course Type	PEC								
Tea	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03								
Tota	al Teaching Hours	40	CIE + SEE Marks	50+50								
Cour	se Objectives:											
1.	To familiarize principles of paralle	el programmine	9									
2.	To understand compiler optimiza	itions										
3.	To comprehend the parallel archi	itectures										
4.	To familiarize parallel programmi	ing paradigms										
		UNIT-I		-								
Prog	ramming principles:											
React	tive parallel programming. Synchro	nization strate	gies, critical regions, atomic									
upda	tes, races, deadlock avoidance, p	revention, live	ock, starvation, scheduling									
fairne	ess, virtualization, speculative paral	lelization, trans	actional memories.									
Optiı	mizations:											
Basic	compiler optimizations, Control an	d data flow ana	lysis, Enhancing parallelism,									
depe	ndence analysis. Tiling for locali [.]	ty and comm	unication, Aggregation for									
comr	nunication, Load balancing strategi	es, Register All	ocation: Coloring, Spilling &									
IPA, F	Pointer alias Analysis ,Dynamic Cod	е										
Optir	nizations and garbage collection,											
				16 Hours								
		UNIT-II		1								
Auto	matic Programming:											
Prog	ram transformation by pattern ma	tching, Partial	evaluation, Object-oriented									
and A	Aspect-oriented programming, Aut	omatic Parallel	ization I and II.									
Over	view of architectures:											
Archi	tectural characterization of most in	mportant Paral	lel systems today. Issues in									
effect	tive programming of parallel archit	ectures: exploit	ation of parallelism, locality									
(cach	e, registers), load balancing, comm	iunication,										
overh	nead, consistency, coherency, laten	cy avoidance		14 Hours								
		UNIT-III		1								
Prog	ramming paradigms:											
By th	e data: Partitioned data, global view	w of data, and	no state. By control:									
Partit	ioned control, global view of contr	ol, functional c	ontrol. Survey of									
progi	ramming languages/APIs: OpenMP	and MPI.		10 Hours								
-												
Cour	se Outcomes: At the end of the co	ourse student w	vill be able to									
1	To explain the principles of parall	lel programmir	0									
2	To perform different compiler op		'Y									
2.	To illustrate automatic paralleliza	tion										
3. To illustrate automatic parallelization												

4.	To comprehend the parallel architectures											
5.	To explain the parallel programm	ning	par	adig	ms							
	Program Outcomes→	1	2	3	4	5	6	7	8	PSC	D↓	
	↓ Course Outcomes									1	2	
	1	2		2	3	2			2	1	3	
	2	2		2	3	2			2	1	3	
	3	2		2	3	2			2	1	3	
	4	2		2	3	2			2	1	3	
	5	2		2	3	2			2	1	3	
TEXT	BOOKS:											
1.	Muchnick, StevenS., Advanced C	Com	piler	Des	ign	and	Impl	eme	ntatio	n.		
	MorganKaufmann,1997											
2.	Lowry and McCartney, Automat	ing	Soft	ware	Des	ign,	AAA	IPres	ss, 199	91.		
3.	John L. Hennessy and David A. F	Patte	ersor	n, Co	mpi	uter	Arch	itect	ure: A	Quan	titative	
	Approach, Morgan Kaufmann; 5	edi	tion,	, 201	.1.							
REFE	RENCE BOOKS:											
1.	Czarnecki, K. and Eisenecker, U.,	Gen	erat	ive P	rogr	amr	ning	: Met	thods,	Tools	and	
	Applications, Pearson,2000.											
2.	Maurice Herlihy and Nir Shavit,	The	Art	of M	ultip	oroce	essoi	^r Prog	gramn	ning, I	Morgan	
	Kaufmann, Morgan Kaufmann; 1stedition, 2012.											
3	Niranjan N. Chiplunkar and Raju	ı K.,	Intro	oduc	tion	to P	arall	el Cc	mput	ing. W	/iley	
	India,2020.								•	-	-	

CYBER SECURITY & FORENSICS												
Cou	rse Code:	22CSE113	Course Type	PEC								
Теа	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03								
Tota	al Teaching Hours	40	CIE + SEE Marks	50+50								
Cour	Course Objectives:											
1.	To understand the basics of cybe	r security.										
2.	To understand the concepts of fir	rewalls.										
3.	To analyze the intrusion detection	n system and l	Hash authentication.									
4.	To analyze phishing and identify	the theft.										
5.	To Understand the computer fore	ensics.										
		UNIT-I		1								
Cybe	r security Overview:											
Intro	duction, Security from Global Persp	ective, Trends	in the Types of Attacks and									
Malw	are, The types of Malware, Vuln	erability Nam	ning Schemes and security									
confi	guration schemes, The attacke	ers motivatio	n and tactics, Zero-Day									
Vulne	erability, Attacks on the power g	rids and Utili	ty networks, Network and									
Infras	structure Overview.											
Fire V	Valls : Firewalls, Stateless Packet Filt	tering, Statefu	l or session Filtering,									
Appli	cation-level Gateways, Circuit level	Gateways, A C	Comparison of Four types of									
gatev	vays.			15 Hours								
		UNIT-II										
Intru	sion Detection / Prevention Syste	em :										
Over	view, The approaches used for IDS,	/ IPS, Network	Based IDS/IPS, Host Based									
IDS/I	PS, The detection of Polymorphi	c and metam	orphic worms, Distributed									
Intru	sion Detection system and standard	d.										
Hash	and Authentication:											
Auth	entication overview, Hash Functions	s, The Hash Me	essage Authentication Code,									
Passv	vord Based Authentication, Passwo	ord Based Enc	ryption Standard, Password									
Based	d Security Protocols, One time pass	word and toke	ens (only two	15.11								
factor authentication), Open Identification and Open Authorization.												
UNIT-III												
Phish	ing and Identity theft: Introductior	n, Phishing, Ide	entity theft (ID) Cyber Crime									
and (Cyber Security: Introduction, Why d	o we need cyt	per laws: Indian context, The									
India	n IT Act, Challenges to Indian I	Law and cyb	ercrime scenarios in India,									
Cons	equences of not addressing the v	weakness in i	nformation technology Act.									
Digital Signatures and Indian Act. Cyber Crime and Punishment												

Understanding Computer Forensics: Introduction, Digital forensics science, The need of computer forensics, Cyber forensics and digital evidence, Digital forensics life cycle, Network Forensics, Computer forensics and steganography 10 Hours

Course Outcomes: At the end of the course student will be able to

- 1. To understand the basics of cyber security.
- 2. To understand the concepts of firewalls.
- 3. To analyze the intrusion detection system and Hash authentication.

publication: CRC press, Taylor and Francis group, 2011.

- 4. To analyze phishing and identify the theft.
- 5. Understand the computer forensics.

	Brogram Outcomes	1	2	2	Λ	5	6	7	Q	DC		
	Program Outcomes→	1	2	5	4	5	0	1	0	FJ	J↓	
	↓ Course Outcomes									1	2	
	1	2		1						3	1	
	2	2		1						2	3	
	3	2		1		3				3	2	
	4	2		1						2	3	
	5	2		1						3	1	
TEXTB	OOKS:											
1.	Chwan-Hwa (John) Wu, J. David	Irwi	n, In	trod	uctio	on to	o Co	mput	ter Ne	twork	s and	d Cyber
	security, publication: : CRC press	s, Ta	ylor	and	Frar	ncis g	grou	р, 20	13.			
2.	Cyber Security – Nina Godbole, S	Suni	t Bel	apui	re, P	ublic	atio	n :Jol	nn Wil	ey, 20	12.	
3.	Cyber security essentials -Edited	d by	Jam	es G	raha	ım, F	licha	rd H	oward	, Ryar	0 Olso	on,

DESIGN THINKING

Cou	rse Code:	22CSE114	Course Type	PEC								
Tead	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03								
Tota	al Teaching Hours	40	CIE + SEE Marks	50+50								
Cours	se Objectives:											
1.	1. To provide a basic conceptual design thinking											
2. To explore customer need analysis.												
3.	To understand the translation of	f customer need	ds.									
4.	To work on problem decomposi	ition.										
5.	To understand product develop	ment process.										
		UNIT-I										
Intro Cento pract Ident deve mark	duction and problem discovery: I ered Design &Evoking the Right :itioners. :ifying Customer Needs: Product lopment phase in designplannin rets. Types of product users Custo	Introduction to problem, Skills o t development g and analysis, omer needs anal	process and concept, Customer needs and	15 Hours								
			,									
Trans need Dyna Appli conce Syste	slating customer needs into meas s vs. Specifications,Quality function mics of product specifications. ied Creativity: Problem decompos epts, Brainstorming principles and em exploration and concept / dow	urable specifica on deployment sition technique d their efficacy i n-selection	tions: Bench marking (house of quality), is and solution n creative thinking,	15 Hours								
		UNIT-III										
Desig DFE deve Mille	3n for Environment: principles and decision making, H lopment process,Product life cycle r story.	How DFE integr e and environm	rates with the product nental impacts, Herman	10 Hours								
Cours	se Outcomes: At the end of the c	ourse student v	vill be able to									
1.	Examine Design Thinking conce	pts and principl	es									
2.	Practice the methods, processes	;, and tools of c	ustomer need analysis.									
3.	Apply the Design Thinking appropriate the needs to specifications.	oach and mode	el to real world situations and	l translate								
4.	 Analyze the role of primary and secondary research in the discovery stage of Design Thinking 											

NITTE (Deemed to be University)

5. Apply the design thinking to real world problems.

	Program Outcomes→	1	2	3	4	5	6	7	8	PSC	PSO↓		PSO↓	
	↓ Course Outcomes									1	2			
	1	3		2						3	2			
	2	3		2	З					3	2			
	3	3		2		3				3	2			
	4	3		2						3	2			
	5	3		2						3	2			
TEXTB	OOKS:													
1	Karl T. Ulrich, Steven. D. Eppinger, "Product design and development", Mcgr. publications, 5th ed., 2011.													
2	Nanua Singh, "Systems approa Wiley India Pvt. Ltd., 4435-36/7,	ch to Ans	o co sari F	mpu Road	ter i , Daı	nteg ryag	jrate anj,	d de 1999	sign a	nd ma	anufa			
3	Wake, Warren K., Design Paradi Wiley & Sons, 2000.	gms	A So	ource	e for	Cre	ative	e Visu	ıalizat	ion, N	ew Y			
4	Rowe, Peter G. Design Thinking	, Car	nbri	dge,	MA:	MI	[Pre	ss 19	87.					

ADVANCED ALGORITHMS

Cou	ırse Code:	22CSE121	Course Type	PEC					
Теа	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03					
Tot	al Teaching Hours	40	CIE + SEE Marks	50+50					
Cour	rse Objectives:								
1.	T								
1.	To analyze the efficiency of recu the concepts of amortized analy	rsive and non-i sis of algorithm	recursive algorithms and to u ns.	nderstand					
2.	To analyze the various graph alg	orithms and ev	valuate its efficiency.						
3.	To understand parallel algorithm	ns and apply th	em on various real-time prot	olems.					
4.	To analyze various string-matchi	ing algorithms.							
5.	To analyze randomized probabi	listic Monte Ca	arlo and Las Vegas algorithm	с					
<u> </u>	To analyze randomized, probabi		and the tas vegas algorithm						
Recu mast Meth path Ford Paral Syste Ranc Strin mato	dard notations and common f irrence equations - The Substitution er method; Amortized Analysis hods. Graph Algorithms: Bellman s in a DAG; Johnson's Algorith - Fulkerson method; Maximum bip lel Algorithms: Parallel Algorithm ems; Matrix Multiplication; Image I dom Sequence. g-Matching Algorithms: Naïve strir	Method, The I Method, The I - Aggregate, - Ford Algorit hm for sparse artite matching UNIT-II Models; Perfo Dithering; Para ng Matching; Rath-Morris-Pratt	urrences and Solution of Recurrence tree method, The Accounting and Potential thm; Single source shortest graphs; Flow networks and g. ormance Metrics for Parallel llel Merge Sort; Searching A abin - Karp algorithm; String algorithm; Boyer– Moore	16 Hours					
Algo	rithm.								
Droh	abilistic And Pandomized Algorith	me: Drobabilie	tic algorithms: Pandomizing]					
Dete	rministic Algorithms, Monte Carlo	o and Las Veg	gas algorithms; Probabilistic						
Num	ierical Algorithms.			10 Hours					
<u></u>	rea Automace At the and of the a	ourco ctudont :	will be able to						
Cour	ise outcomes: At the end of the co	ourse student v							
1.	To analyze the efficiency of recu the concepts of amortized analy	rsive and non-ı sis of algorithn	recursive algorithms and to u	nderstand					
2.	To analyze the various graph alg	orithms and ev	valuate its efficiency.						
3.	To understand parallel algorithm	ns and apply th	em on various real-time prot	olems.					

N	(Deemed to be Un	E	Sylla	abus	of M	. Tec	h (Co	ompi	uter S	science	& Eng	gineer	ring)
	4.	To analyze various string-match	ing a	algor	rithm	ns.							
	5.	To analyze randomized, probabi	listic	:, Mo	onte	Carl	o an	d La	s Veo	gas alg	gorith	ms.	
		Program Outcomes→	1	2	3	4	5	6	7	8	PS	C↓	
		↓ Course Outcomes									1	2	
		1	3		2						3	2	
		2	3		2						3	2	
		3	3		2						3	2	
		4	3		2						3	2	
		5	3		2		3				3	2	
	TEXT	BOOKS:											
	1.	TCormen,C Leiserson and Rives	t,Intr	odu	ctior	ntoA	lgor	ithm	s,3rd	leditio	n,PHI,	2007	
	2.	M.J.Quinn, "DesigningEfficientAl	gorit	thms	sforP	arall	lelCo	ompi	uter",	,McGra	awHill	,200	7.
	3.	Kenneth A.Berman, Jerome L.Pa	ul: A	lgor	ithm	is, Ce	enga	ige l	earn	ing, 20	002.		
	REFER	ENCE BOOKS:											
	1.	Ellis Horowitz, Sartaj Algorithms, 2 nd edition, Galgotia	a Pul	Sah blica	nni, tion:	s, 20	Fun 08	dam	ienta	ls	of	C	Computer
	2.	S.G.Akl,"Design and Analysis of	Para	llel A	Algo	rithn	ns",	Pren	tice I	Hall,19	92.		

ADVANCES IN COMPUTER VISION

Cou	ırse Code:	22CSE122	Course Type	PEC
Теа	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03
Tot	al Teaching Hours	40	CIE + SEE Marks	50+50
Cour	rse Objectives:		•	
1.	To explain the need of spatial ar compression	nd frequency do	omain techniques for image	e
2.	Identify, formulate and solve pro	blems in imag	e processing and computer	vision.
3.	Critically review and assess scier knowledge to identify the novel	ntific literature i ty and practical	n the field and apply theor lity of proposed methods	etical
4.	Design and develop practical an applications or systems	d innovative in	nage processing and compu	uter vision
	· · · · · · · · · · · · · · · · · · ·	UNIT-I		
Intro	oduction to Computer Vision:			
Spec Trans Pixe l Syste	ial effects, Modeling, Applicati sformation matrices, Matrix inverse Is, Features, and Cameras: Pixel ems (filters),Convolution & Corr	ions; Linear A e, Matrix rank, S I s and Filters: relation. Edge	Algebra: Vectors Matrice SVD. Images as functions, Linea detection: Simple, Canny	s, ar y,
RAN:	SAC; Feature detector: Local invari	ent, Harris, DO	G, SIFT; Camera Models	15 Hour
		UNIT-II		
Cam	era: Pinhole Cameras, Cameras	& lenses, Proje	ection matrix, Intrinsic	
paraı	meters, Extrinsic parameters; Stere	eo Vision: Epipe	olar Geometry, Parallel	
imag	es, Image Rectifica	ition, Solving	correspondence	
prob	lem, Active Stereo Vision System;			15 Hour
		UNIT-III		I
Regi Gesta Featu Appl Clust	ons of Images, and Segmentation alt Theory; Agglomerative, K-mear ure tracking, Applications; Advance ications: Binary, Image Matting; Fig ering Algorithms.	on: Basic Conce ns & Mean-shift ed Image Parsir gure-ground Se	pts of Segmentation: t Clustering; Optical flow, ng Topic and egmentation Using	
Reco Near Dete	ognizing Faces and Objects: Bas rest Neighbor Match;PCA and ction, Tracklet Generation Associat	ic Concepts in Eigenfaces; Tra tion;	Recognition & its pipeline acking Millions of People	e, e: 10 Hou i
<u> </u>				
Cour	rse Outcomes: At the end of the c	ourse student v	will be able to	
1	Evolution the need of constitution of f	roquonau domi	ain tachniquae far imaga as	moraccion
-•	I cybiain the need of spatial and I	requency doma	and techniques for image CC	mpression

IJ	Deemed to be Univ	•E	Sylla	abus	of M	. Tec	ch (C	omp	uter S	Science	& Eng	;ineer	ring)		
	2.	Identify, formulate and solve pr	oble	ms iı	n ima	age	proc	essir	ng ar	nd com	nputer	r visic	on.		
	3.	Critically review and assess scie knowledge to identify the nove	ntific Ity ar	liter nd p	ratur racti	e in cality	the t y of	field prop	and osec	apply I meth	theor ods	etical			
	4.	Design and develop practical ar applications or systems	าd in	nova	ative	ima	ge p	roce	ssing	g and o	compu	uter v	vision		
L	5.	Solve problems using the conce	epts o	of im	nage	seg	men	tatic	on, oł	oject re	ecogn	ition.			
		Program Outcomes→12345678PSO↓↓ Course Outcomes1212													
		1	2								3	2	l		
		2 1 2 3 3 2													
		3	2								3	2	l		
		4	2								3	2	l		
		5	2				3				3	2			
	TEXTE	BOOKS:													
	1.	Richard Szeliski, Computer Microsoft Research, Electronic	∖ draft	/isio ,201	n: Al 0.	gorit	thms	5	and	Арј	olicati	ons,			
	2.	David A.Forsyth &Jean Ponce,	Com	pute	r Vis	ion:	ΑM	ode	rn Ap	proac	h, Pre	ntice			
		Hall; 2 edition,2011.													
	3.	Hartley & Zisserman, Multiple	View	Geo	met	ry in	Cor	nput	er Vi	sion, C	Cambr	idge			
		University Press;2 edition,2004.				-		-				-			
	REFER	ENCE BOOKS:													
	1.	Machine vision, Jain, Ramesh and Rangachar Kasturiand Brian G.Schunck;													
		McGraw-Hill ,Edition-1995.													
	2.	Introductory Computer Vision A Hill, Edition-1991. Digital Image Addison-Wesley, Edition: 3rd, N	And I e Pro (ear::	lmag cess L998	ge Pr sing,	oces Gon	ssing zale:	j, Lov z, Ra	w, Ac Ifael (lrian; N C. and	McGra Richa	w- ard E.'	Woods;		

NATURAL LANGUAGE PROCESSING

Cou	rse	Code:	22	2CSE	E123		Cοι	irse	Тур	e		PI	EC
Теас	:hin	g Hours/Week (L: T: P: S)	3-	+0+	0+0		Cre	dits				03	3
Tota	l Te	eaching Hours	40)			CIE	+ S	EE M	arks		50)+50
Cours	se C)bjectives:											
	1 To understand the basic concents of not understand an analysis re-												
1.	1. To understand the basic concepts of natural language processing.												
2.	2. To study the semantics and paradigms.												
3.	3. To understand the algorithms used in NLP												
4.	4. To know the implementation of NLP in python.												
	UNIT-I												
Intro	duc	tion: What is Natural Languag	je Pi	roce	ssing	, Мо	otiva	tion	, Wo	rds - I	Regula	ir	
Expre	ssio	ns and Automata, Words a	nd [·]	Tran	sduc	ers,	N-g	gram	ns-Pa	rt–of-	Speec	h	
Taggi	ng,	Hidden Markov Models, Maxir	nun	ו Ent	tropy	/ Mc	del.						
Synta	x: S	yntactic Parsing, Statistical Par	sing	j, Fe	ature	es ar	nd U	nific	atior	n- Lan	iguage	s	
and C	and Complexity, Language Modelling.												5 Hours
				UNI	T-II								
Sema	nti	cs and Pragmatics: Semantic	s ar	nd P	Pragr	natio	cs: T	he F	Repre	esenta	ation c	of	
Mean	ing,	, Computational Semantics, I	Lexi	cal S	Sem	antic	s: C	Comp	outat	ional	Lexica	al	
Sema	ntic	s, Computational Discourse.											
Applie	catio	ons: Applications, Informatic	on l	Extra	actio	n, C	Ques	tion	An	swerir	ng an	d	
Sumn	nari	zation, Dialogue And Conversa	itior	nal A	gent	s, M	achi	ine T	rans	lation.		1	5 Hours
				UNI	T-III								
	Usir	Python : Language Process	sina	and	1 Pvt	hon	- A(Ces	sina	Text (ornor	a	
and	Lex	ical Resources-Processing R	law	Tex	kt-W	ritin	a S	truc	turec	l Pro	arams	;-	
Cateo	oriz	zing and Tagging Words-Learn	nina	to C	Class	fv T	ext-l	Extra	cting	a Infor	rmatio	n	
from	Tex	t–Case Study.				.,				,.		1	0 Hours
		<u> </u>											
Cours	se C	Dutcomes: At the end of the co	ours	e stı	uden	t wil	l be	able	to				
1.	Ar	alyze the natural language tex	t to	extr	ract i	t int	o dif	fere	nt pa	arts of	speec	h.	T
2.	Ur	derstand the syntax and the fe	atu	res	ofina	tura	l lan	aua	ne te	xt wit	h resp	ect t	0
	lar	nguages.	Juru					guu	90 10				<u> </u>
3.	An	alyze the text to understand th	ne v	ariou	us se	mar	tics	and	prag	matic	S		
4.	Ap	pply information retrieval techr	niqu	es to	o nat	ural	lang	juag	e tex	t.			
5.	Im	plement the NLP concepts usi	ng p	ytho	on.								
		Program Outcomes→	1	2	3	4	5	6	7	8	PSC)↓	
		↓ Course Outcomes									1	2	
1 1 1													
		2				1					1		

	3				1					1		
	4				1					1		
	5	2	1		1	3				2	3	
1												
TEXTBOOKS:												
1.	Allen, James, Natural Language Understanding, Second Edition, Benjamin/Cumming,											
	1995.											
2.	Jurafsky, D. and J. H. Martin. Speech and language processing: An Introduction to											
	Natural Language Processing, Computational Linguistics, and Speech Recognition,											
	Second Edition, Prentice Hall,2008.											
3.	Steven Bird, S., Klein, E., Loper, E, Natural Language Processing with Python-											
	Analyzing Text with the Natural Language Toolkit, O'ReillyMedia, 2010.											

SECURITY ANALYTICS

	Irse Code:	22CSE124	Course Type	PEC				
Теа	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03				
Tot	al Teaching Hours	40	CIE + SEE Marks	50+50				
Cour	se Objectives:							
	1							
1.	To understand fundamentals of	Security Analyt	ics solution.					
2.	To understand the role of SIEM	product.						
3. To analyze system (Windows, Linux, Firewall, Routers etc) logs								
4.	To understand the core compo	nents of a Secur	ity Operations Center (S	SOC) setup.				
5.	To understand how correlation	rules are desigr	ed and implemented.					
		UNIT-I						
ntrod ands ab –	luction to Security Operations an cape, Business Challenges, Overvi Deploy SIEM solution.	d the SOC, Cyb ew of SOC Tech	ersecurity Challenges, T nologies.	hreat 13 Hours				
		UNIT-II		I				
	Strategy, The SOC Inhastructure,	Security Event	Generation and Colle	ction,				
ulne echn Lab -	rability Management, Identifyin ologies to Consider During SOC I Integrate SIEM solution with Sec	Security Event g Vulnerabiliti Design, Firewalls urity control dev	Generation and Colle es, People and Proce Preparing to Operate. Vices.	ction, esses, 15 Hour s				
/ulne echn Lab -	rability Management, Identifyin ologies to Consider During SOC E Integrate SIEM solution with Sec	Unity Event Og Vulnerabiliti Design, Firewalls urity control dev UNIT-III	Generation and Colle es, People and Proce Preparing to Operate. vices.	ction, esses, 15 Hour s				
/ulne echn Lab - he O	rability Management, Identifyin ologies to Consider During SOC E Integrate SIEM solution with Sec perate Phase, Reacting to Events a cal labs on OSSIM.	UNIT-III	Generation and Colle es, People and Proce , Preparing to Operate. vices.	ction, esses, 15 Hour s prove.				
/ulne echn Lab - he O ractio	rability Management, Identifyin ologies to Consider During SOC E Integrate SIEM solution with Sec perate Phase, Reacting to Events a cal labs on OSSIM. - Generate attacks and analyze pa	UNIT-III Ockets on SIEM s	Generation and Colle es, People and Proce , Preparing to Operate. vices. aintain, Review, and Imp olution.	orove. 12 Hours				
/ulne /echn Lab - he O ractio Lab -	rability Management, Identifyin ologies to Consider During SOC E Integrate SIEM solution with Sec perate Phase, Reacting to Events a cal labs on OSSIM. - Generate attacks and analyze pa	vulnerabiliti Design, Firewalls urity control dev UNIT-III and Incidents M ckets on SIEM s	Generation and Colle es, People and Proce , Preparing to Operate. vices. aintain, Review, and Imp olution.	ction, esses, prove. 12 Hours				
/ulne echn Lab - he O ractio Lab - Cour	rability Management, Identifyin ologies to Consider During SOC E Integrate SIEM solution with Sec perate Phase, Reacting to Events a cal labs on OSSIM. - Generate attacks and analyze pa	vulnerabiliti Design, Firewalls urity control dev UNIT-III and Incidents M ckets on SIEM s course student v	Generation and Colle es, People and Proce , Preparing to Operate. vices. aintain, Review, and Imp olution. vill be able to ecurity Operation Cente	ction, esses, prove. 12 Hours				
/ulne echn Lab - he O ractio Lab - Cour 1. 2.	rability Management, Identifyin ologies to Consider During SOC E Integrate SIEM solution with Sec perate Phase, Reacting to Events a cal labs on OSSIM. - Generate attacks and analyze pa rese Outcomes: At the end of the o To understand the core compose To understand the architecture	vulnerabiliti Design, Firewalls urity control dev UNIT-III and Incidents M ckets on SIEM s course student v nents of SOC (Sa of SIEM solution	Generation and Colle es, People and Proce , Preparing to Operate. vices. aintain, Review, and Imp olution. <u>vill be able to</u> ecurity Operation Cente n.	r).				
<pre>/ulne /ulne /</pre>	rability Management, Identifyin ologies to Consider During SOC E Integrate SIEM solution with Sec perate Phase, Reacting to Events a cal labs on OSSIM. - Generate attacks and analyze pa rse Outcomes: At the end of the o To understand the core compose To understand the architecture To analyze security logs on SIEM	Vulnerabiliti Design, Firewalls urity control dev UNIT-III and Incidents M ckets on SIEM s course student v nents of SOC (So of SIEM solution	Generation and Colle es, People and Proce , Preparing to Operate. vices. aintain, Review, and Imp olution. vill be able to ecurity Operation Cente n.	r).				
(ulne echn Lab - he O ractio Lab - Cour 1. 2. 3. 4.	rability Management, Identifyin ologies to Consider During SOC E Integrate SIEM solution with Sec perate Phase, Reacting to Events a cal labs on OSSIM. - Generate attacks and analyze pa rse Outcomes: At the end of the o To understand the core compose To understand the architecture To analyze security logs on SIEN To analyze co-relation rules and	Vulnerabiliti Design, Firewalls urity control dev UNIT-III and Incidents M ckets on SIEM s course student w nents of SOC (So of SIEM solution M solution.	Generation and Colle es, People and Proce , Preparing to Operate. vices. aintain, Review, and Imp olution. vill be able to ecurity Operation Cente n.	r).				
(ulne echn Lab - he O ractio Lab - Cour 1. 2. 3. 4. 5.	rability Management, Identifyin ologies to Consider During SOC E Integrate SIEM solution with Sec perate Phase, Reacting to Events a cal labs on OSSIM. - Generate attacks and analyze pa rse Outcomes: At the end of the o To understand the core compose To understand the architecture To analyze security logs on SIEN To analyze co-relation rules and To understand various dashboa	Vulnerabiliti Design, Firewalls urity control dev UNIT-III and Incidents M ckets on SIEM s course student v nents of SOC (Si of SIEM solution M solution.	Generation and Colle es, People and Proce , Preparing to Operate. vices. aintain, Review, and Imp olution. vill be able to ecurity Operation Cente n.	r).				

	Program Outcomes→	1	2	3	4	5	6	7	8	PSC	C	
	↓ Course Outcomes									1	2	
	1	3		3	2				2	3		
	2	3		3	2				2		2	
	3	2		1	2				2		2	
	4	3		1	1				2		1	
	5	3			1				2		1	
TEXTBO	OKS:											
1. B	lue Team Handbook: Incident ecurity Incident Responder by	Resp Don	ons Mu	e Ed rdoc	ition h GS	: A c SE	ond	ense	d field	l guid	e for	the Cyber
2. T	hink Like a Hacker: A Sysadmir hannon Zinck	n's G	uide	to C	Cybe	rsec	urity	y by N	/lichae	el J. M	elon	e and Dr.
REFEREN	NCE BOOKS:											
1. Op	erating and maintaining your	SOC	by J	oey	Mur	niz, G	Gary	McIn	tyre, l	Nadhe	em A	Fardan
h	ttps://linoxide.com/install-com	figur	e-al	ienva	ault-	sien	1-os	sim/				

CLOUD COMPUTING

	Cou	ırse Code:	22CSE131	Course Type	PEC					
	Теа	ching Hours/Week (L: T: P: S)	0+3+0+0	Credits	03					
	Tot	al Teaching Hours	40	CIE + SEE Marks	50+50					
(Course Objectives:									
	1.	Outline the fundamental ideas behind Cloud computing, and the evolution of theparadigm, its applicability; benefits as well as current and future challenges.								
	2.	Get the basic idea and principles in Datacenter design and Management and findthe importance of Virtualization in Cloud.								
	3.	Get the idea of different Cloud deployment models and Cloud Delivery Modelsand their security issues.								
	4.	Outline the fundamental ideas behind Cloud computing, and the evolution of theparadigm, its applicability; benefits as well as current and future challenges.								
	5.	Tell how Cloud Computing solves different problems in the present by on side ring different Cloud Vendors and their Cloud Design architecture.								

UNIT-I

Eras of computing, Parallel vs. Distributed Computing, Elements of Parallel Computing- (What is parallel computing, hardware architecture for Parallel processing, approaches to parallel programming, levels of parallelism, Laws of caution). Elements of Distributed Computing- (General concepts and definitions, components of a distributed system, Architectural styles for distributed computing, models for inter-process communication, Technologies for distributed Computing-Remote procedure call, Service oriented computing). Classic data center, its elements, challenges and benefits. Data center management Steps in transitioning to cloudconsolidation, automation, IT as a service.

15

Cloud computing Architecture: - Introduction, Cloud reference models-(Architecture, Infrastructure/Hardware as a service, Platform as a service, Software as a service), Types of cloud – (Public Clouds, Private Clouds, Hybrid Clouds, Community Clouds), Economics of cloud, Open challenges.

UNIT-II

Virtualization: –characteristics of virtualized environments, taxonomy of virtualization technique, Virtualization and cloud computing, Pros and Cons of virtualization, Technology examples- XEN, VMware, Microsoft Hyper-V.

Application and Desktop virtualization - Application virtualization – different layers, user profile virtualization, application streaming and encapsulation, benefits. Desktop virtualization- methods –client based and computer based.

Security Concerns, Risk Issues: - Cloud Computing- Security Concerns. A Closer

Examination: Virtualization, A Closer Examination: Provisioning. Securing the Cloud: Key Strategies and Best Practices: - Overall Strategy: Effectively Managing Risk-Risk Management: Stages and Activities. Overview of Security 15 Controls, Cloud Security Controls Must Meet Your Needs, NIST Definitions for Hours Security Controls, Unclassified Models, Classified Model the Cloud Security Alliance Approach. The Limits of Security Controls - Security Exposure Will Vary over Time, Exploits Don't Play Fair. Best Practices: Best Practices for Cloud Computing- First Principals, Best Practices across the Cloud Community. Other Best Practices for Cloud Computing- Cloud Service Consumers, Cloud Service Providers. Security Monitoring. The Purpose of Security Monitoring, Transforming an Event Stream, The Need for C.I.A. in Security Monitoring, the Opportunity for MaaS. UNIT-III Cloud Platforms in Industry, Amazon Web Services, Compute Services, Storage Services, Communication Services, Additional Services, Google App Engine, Architecture and Core Concepts, Application Life-Cycle, Cost Model, Observations, Microsoft Azure, Azure Core Concepts, SQL Azure, Windows Azure Platform 10 Appliance. Hours Cloud Applications Scientific Applications, Healthcare: ECG Analysis in the Cloud, Biology: Protein Structure Prediction, Biology: Gene Expression Data Analysis for Cancer Diagnosis, Geo-science: Satellite Image Processing, Business and Consumer Applications, CRM and ERP, Productivity, Social Networking, Media Applications, Multiplayer Online Gaming. **Course Outcomes:** At the end of the course student will be able to Define the concept of cloud computing business need and various networkingmethods. 1. Express the infrastructure management for cloud environment. 2. 3. Describe the Virtualization at all levels used by XEN, Vmware, Hyper-v Explain the security concepts in cloud computing. 4. Practice the case studies of public cloud such as AWS, Google App Engine and private 5. cloud such as Open Stack.

COs	Program Outcomes (POs)												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3										2		3	
CO2	3	3										2		3	
CO3	3	3										1		3	
CO4	3	3										2		3	
CO5	3	3										1		3	1

69

TEXTE	BOOKS:
1.	Buyya, Rajkumar, Christian Vecchiola and ThamaraiSelvi, "Mastering Cloud
	Computing Fundamentals and Applications Programming", McGraw Hill, 2013.
2.	Winkler, Vic (J.R), "Securing the Cloud - Cloud Computer Security Techniques and
	Tactics.",Elsevier Inc, 2012.
REFER	ENCE BOOKS:
1.	Hurwitz, Judith, "Cloud computing for dummies.", Wiley India Pvt Ltd, 2011.
2	Rittinghouse, John, "Cloud computing – implementation, management and
	security",CRC Press, First edition, 2009.
3	Velte, Toby, Anthony Velte and Robert Elsenpete. "Cloud Computing, A Practical
	Approach.",Tata McGraw-Hill Authors, 2010.

BUSINESS INTELLIGENCE

	T		1							
	Cou	rse Code:	22CSE132	Course Type	PEC					
	Teac	hing Hours/Week (L: T: P: S)	3+0+0+0	Credits	03					
	Tota	I Teaching Hours	40	CIE + SEE Marks	50+50					
	Cours	se Objectives:								
	1.	Identify various sources of data and identify the methods to process them.								
	2.	Explain the ETL process and carr	ry out the ETL p	rocess for a given data set.						
	3.	Design a suitable schema for a	given problem.							
	4.	Illustrate the concepts of data r	nining and Dem	nonstrate the Classification a	Ind					
		clustering methods.								
UNIT-I										
	INTR	ODUCTION TO BUSINESS INTEL	LIGENCE: Type	s of digital data – Structured	,					
	semi	structured and unstructured – sou	irces, characteri	zes, challenges: Introduction	n					

semi structured and unstructured – sources, characterizes, challenges; Introduction to OLTP, OLAP and Data Mining; BI Definitions & Concepts; BI Framework, Who is BI for, BI Users, BI Applications; BI Roles & Responsibilities, Need for data warehouse – definition, data mart, Approaches for data warehouse, ETL(Extraction Transformation Loading)

Basics of Data Integration: Concepts of data integration; Need and advantages of using data integration; Introduction to common data integration approaches;

Introduction	to	data	quality:	data	profiling	concepts	and	applications,	1
Introduction to	o SSI	S Arch	itecture, Ir	ntrodu	ction to ET	L using SSI	S tool	•	15 Hours

UNIT-II

A Multidimensional Data Model - Concepts of dimensions, facts, cubes,
attributes, hierarchies, star and snowflake schema; Data Warehouse Architecture.
ntroduction to data and dimension modeling, multidimensional data model, ER
Modeling vs. multidimensional modeling;
introduction to business matrics and KDIs. Massure matrics KDIs and

Introduction to business metrics and KPIs- Measure, metrics, KPIs and performance management, salient attributes of a good metric, SMART test.

Introduction to enterprise reporting – perspectives, standardization and presentation, balanced scorecards. Concepts of dashboards- types, steps, Applications of Data mining and Case studies of BI.

UNIT-III

Data Mining—On What Kind of Data? Data Mining Functionalities—What Kinds of							
Patterns Can Be Mined? Mining Association rules Basic concepts, frequent itemset							
mining methods.							
Classification And Prediction: Issues regarding Classification and Prediction,	10 Hours						

classification by Decision tree induction, Bayesian classification, and prediction. **Cluster Analysis** -What is Cluster Analysis? Types of data in cluster Analysis,

15 Hours

Partitioning Methods, and hierarchical clustering Methods.

Course Outcomes: At the end of the course student will be able to

1.	Identify the sources of data based on its type for a business application and apply
	OLTP, OLAP operations.
2	Angle the logged and of DI experting to determine conjugate rates in a DI explication

- Apply the knowledge of BI operation to determine various roles in a BI application 2. and design the ETL process for handling the data from a given application.
- Relate the data warehousing concepts for a real-time business application to model a 3. star, snowflake schema for a multi-dimensional data of a given problem.
- Explain data quality and profiling methods, identify the quality of the data using data 4. profiling techniques. Apply the measures and metrics to the data to design an enterprise report.
- Apply the concepts of mathematics and computer algorithm to illustrate the data 5. mining concepts using association rules.

					-							1
	Program Outcomes→	1	2	3	4	5	6	7	8	PS	D↓	
	↓ Course Outcomes									1	2	
	1	3		2	2				2	2	2	
	2	3		2	2				2	2	2	
	3	3		2	2	2			2	3	3	
	4	3		2					2	2	2	
	5	3		2	2	2			2	3	3	
TEXTI	BOOKS:											
1.	RN Prasad and Seema Acharya	', Fur	ndar	nent	als c	of Bu	sine	ss Ar	alytics	s", Wi	ley-	
	India,2011											
2.	Larissa T Moss and Shaku Atre -	- Bus	sines	s Int	tellig	ence	e Ro	adma	ap: Th	e Con	nplete	e Proje
	Life cycle for Decision Support	Appl	icati	ons,	Add	ison	We	sley I	nform	ation	-	2
	TechnologySeries,2003.	• •						-				
3.	Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", Morgan											

Kaufmann Publishers, 2000 (ISBN: 1-55860-489-8).

ect

BIG DATA ANALYTICS

Cou	ırse Code:	22CSE133	Course Type	PEC					
Теа	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03					
Tot	al Teaching Hours	40	CIE + SEE Marks	50+50					
Cou	rse Objectives:								
1. Study and comprehend in depth the fundamental issues behind the Big Data									
2. Understand various Big Data technologies and different NoSQL databases. L									
	MongoDB NoSQL database.								
3.	Understand various Big Data tec	hnologies and	Hadoop Components such	as HDFS,					
	MapReduce. Learn MapReduce	Programming							
4.	Determine various techniques fo	or analyzing the	e data such as Spark, P,ig ar	nd Hive.					
		UNIT-I							
Intro	oduction to Big Data: Types of dic	gital Data, Char	acteristics of Data, Evolution	n					
of B	g Data, Definition of Big Data, Ch	allenges with I	Big Data, What Is Big Data	?					
Why	Big data? Traditional BI versus Big	ı data. Big Data	Analytics: What is Big Dat	а					
Anal	ytics? Why this sudden Hype a	round Big Dat	ta analytics? Data Science	<u>,</u>					
Term	ninologies used in Big Data environ	iments							
Intro	oduction to NoSQL : Where it is use	ed, Types of No	SQL databases, Why NoSQL	-,					
Adva	antages of NoSQL,								
Intro	oduction to MongoDB: What is	MongoDB? W	hy MongoDB? Using JSON	1,					
Crea	ting or generating a unique key, I	Data types in N	MongoDB, MongoDB Quer	y					
Lang	juage: Insert method, Save								
meth	nod, Update method, Remove meth	nod, Find meth	od, Dealing with Null values						
Coui	nt, Limit, Sort, Skip.			15 Hours					
		UNIT-II							
Intro	oduction to Hadoop: Introducing	J Hadoop, nee	d of Hadoop, limitations o	f					
RDB	MS, RDBMS versus Hadoop, Distr	ributed Compu	iting Challenges, History o	f					
Hade	oop , Hadoop Overview, Use Cas	e of Hadoop,	Hadoop Distributors, HDF	5					
(Had	oop Distributed File System) , F	Processing Dat	a with Hadoop, Managing	J					
Resc	Resources and Applications with Hadoop YARN (Yet another Resource Negotiator).								
Writ	ing Hadoop MapReduce Pro	ograms: Unde	erstanding the basics o	f					
Мар	Reduce, Introducing Hadoop Map	Reduce, Unde	rstanding the different Jav	E					
conc	epts used in Hadoop programmin	g, Writing a Ha	adoop MapReduce example	9					
Und	erstanding several possible MapRed	duce definitions	s to solve business problems						
SPA	RK: Spark applications, Jobs, s	stages and T	asks, Resilient Distributed	t l					
Data	sets(RDD), Anatomy of SPARK Job	Run; SPARK or	N YARN	15 Hours					

UNIT-III

Hadoop Ecosystem: Understanding Hadoop subprojects: Mahout, Apache HBase,	
Hive, Pig, Apache Sqoop, Apache Zookeeper, Apache Solr, Ambari.	
HBase: What is HBase? Storage Mechanism in HBase, Features of HBase, HBase	
and RDBMS, HBase and HDFS.	
Introduction to Pig: What is Pig? Pig on Hadoop, Pig Philosophy, Pig Latin	
overview; Pig Data Types; Running Modes of Pig; Execution Modes of PIG,	
Relational operators, EVAL function, Complex data types.	
Introduction to Hive: What is Hive? Architecture; HIVE Data Types; HIVE File	10 Hours
Format; Hive Query Language(HQL).	10 110015

Course Outcomes: At the end of the course student will be able to

1.	Outline the theory	of big data a	and explain	applications	of big data.
					<u> </u>

2. Get the idea of NoSQL databases, different types of NoSQL datastores.

- **3.** Analyse the technological foundations for Big data with hadoop and design of hadoop distributed file system.
- 4. Understand the concept of MapReduce programming and Spark workflow.
- **5.** Understand the need of Big Data Analytics and Analyze Hadoop Ecosystem

Program Outcomes→	1	2	3	4	5	6	7	8	PSO↓	
↓ Course Outcomes									1	2
1	3		2					2	1	1
2	3		2		2			2	1	1
3	3		2	2	2			2	2	2
4	3		2	2	2			2	3	3
E	С		2		2			2	1	1

TEXTBOOKS:

1.	Seema Acharya, Subhashini Chellappan, "Big Data Analytics", 1st Edition, Wiley, 2015.
2.	Vignesh Prajapati, "Big Data Analytics with R and Hadoop", Packet Publishing 2013,

3. Tom White, Hadoop: The Definitive Guide, 4th Edition, O'Reilley, 2012.

REFERENCE BOOKS:

- Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, "Professional Hadoop Solutions", Wiley, ISBN: 9788126551071, 2015.
- **2.** Chris Eaton, Dirk derooset al. , "Understanding Big data ", McGraw Hill, 2012.
- **3.** E. Capriolo, D. Wampler, and J. Rutherglen, Programming Hive, O'Reilley, 2012.
- 4. Lars George, HBase: The Definitive Guide, O'Reilley, 2011.
- **5.** Alan Gates, Programming Pig, O'Reilley, 2011

- **1.** https://www.upgrad.com/big-data-analytics-
- 2. https://www.coursera.org/courses?query=big%20data%20analytics.
- **3.** https://www.edx.org/micromasters/big-data

SOCIAL AND WEB ANALYTICS

Cou	ırse Code:	22CSE134	Course Type	PEC						
Теа	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03						
Tot	al Teaching Hours	40	CIE + SEE Marks	50+50						
Course Objectives:										
1.	1. To understand social media, web and social media analytics, and their potential impact.									
2.	To model and visualize the socia	al network.								
3.	To understand the evolution of	the social netwo	ork.							
4.	To mine the interest of the user.									
		UNIT-I								
Intro	duction to Web and Social Anal	ytic: Overview	of web & social media (W	eb						
sites,	web apps, mobile apps and social	media), Impact	of social media on busine	SS,						
Socia	al media environment, , How to	leverage socia	l media for better servic	es,						
Usab	Jsability, user experience, customer experience, customer sentiments, web									

marketing, conversion rates, ROI, brand reputation, competitive advantages. Introduction- Introduction to Web - Limitations of current Web – Development of Semantic Web – Emergence of the Social Web – Statistical Properties of Social Networks -Network analysis - Development of Social Network Analysis - Key concepts and measures in network analysis - Discussion networks - Blogs and online communities - Web-based networks. Need of use analytics, Web analytics technical requirements., current analytics platforms, Open Sources licensed platform, choosing right specifications & **1**

platforms, Open Sources licensed platform, choosing right specifications &15 HoursThe optimal solution, Web analytics and a Web Analytics 2.0 framework, Data
Mining, Data Mining Techniques-Association ,Classification, Clustering.15 Hours

UNIT-II

Data Modeling and Mining Communities

Data (Structured data, unstructured data, metadata, Big Data and Linked Data), Modeling And Visualization- Visualizing Online Social Networks - A Taxonomy of 26 Visualizations - Graph Representation - Centrality- Clustering - Node-Edge Diagrams - Visualizing Social Networks with Matrix-Based Representations- Node-Link Diagrams - Hybrid Representations - Modelling and aggregating social network data – Random Walks and their Applications –Use of Hadoop and Map Reduce - Ontological representation of social individuals and relationships. Mining Communities- Aggregating and reasoning with social network data- Advanced Representations - Extracting evolution of Web Community from a Series of Web Archive - Detecting Communities in Social Networks - Evaluating Communities – Core Methods for Community Detection & Mining - Applications of Community Mining Algorithms - Node Classification in Social Networks

UNIT-III

Text and Opinion Mining- Text Mining in Social Networks -Opinionextraction – Sentiment classification and clustering - Temporal sentimentanalysis - Irony detection in opinion mining - Wish analysis - Product reviewmining – Review Classification – Tracking sentiments towards topics overtime. Tools for Social Network Analysis- UCINET – PAJEK – ETDRAW –StOCNET – Splus – R – NodeXL – SIENA and RSIENA – Real world SocialNetworks (Facebook- Twitter Etc.)

Course Outcomes: At the end of the course student will be able to

1.	Understand social media, web and social media analytics, and their potential
	impact.
2	Identify the need of using analytics and evolate data mining techniques

- **2.** Identify the need of using analytics and explain data mining techniques.
- **3.** Recognize types of data and visualize the social network.
- **4.** Determine the evolution of social networks.
- **5.** Explain text mining and mine the opinion of the user.

Program Outcomes→	1	2	3	4	5	6	7	8	PSO↓	
↓ Course Outcomes									1	2
1	2	3					2	2		1
2	3	3		1				2	2	1
3	2	3						2		3
4	3	3						2		2
5	2	3	2	1		2		2	2	3

TEXTBOOKS:

1.	Matthew A.Russell, Mining Social web, O'Reilly;2 edition, 2013, ISBN-13:978-
	1449367619.
2.	Charu C Aggarwal, Social Network Data Analytics, Springer; 2014,978-1489988935
3.	Peter Mika, "Social Networks and the Semantic Web", 1 st edition, Springer, 2007.
4.	BorkoFurht, "Handbook of Social Network Technologies and Applications", 1st edition,
	Springer, 2010.

REFERENCE BOOKS:

1.	Hand, Mannila, and Smyth. Principles of Data Mining. Cambridge, MA: MIT Press,
	2001.ISBN:026208290X.
2.	Avinash Kaushik,Web Analytics2.0:The Art of Online Accountability and Science of
	Customer Centricity, John Wiley & Sons; Pap/Cdr Edition, 2009.
3.	GuandongXu, Yanchun Zhang and Lin Li, "Web Mining and Social Networking –
	Techniques and applications", 1st edition, Springer, 2011.
4.	Giles, Mark Smith, John Yen, "Advances in Social Network Mining and Analysis",
	Springer, 2010.
5.	Ajith Abraham, Aboul Ella Hassanien, VáclavSnáel, "Computational Social Network
	Analysis: Trends, Tools and Research Advances", Springer, 2009.
6.	Toby Segaran, "Programming Collective Intelligence", O'Reilly, 2012. 8. Sule
	Gündüz-Öğüdücü, A. Şima Etaner-Uyar, "Social Networks: Analysis and Case
	Studies'', Springer, 2014.
7.	Hand, Mannila, and Smyth,"Principles of Data Mining", Cambridge, MA: MIT Press, ISBN:
	026208290X, 2001.
E Boo	ks / MOOCs/ NPTEL
1.	https://onlinecourses.nptel.ac.in/noc20_cs78/preview
2.	https://www.coursera.org/learn/social-media-data-analytics
3.	https://www.coursera.org/learn/text-mining

PARALLEL COMPUTING ARCHITECTURE

Cou	rse Code:	22CSE201	Course Type	PCC							
Теа	ching Hours/Week (L: T: P: S)	4+0+0+0	Credits	04							
Tota	al Teaching Hours	50	CIE + SEE Marks	50+50							
Course Objectives:											
1.	1. Know the principles of computer design and way in which arithmetic operations are										
	carried out in a processor										
2.	2. Understand the concepts like instruction scheduling (dynamic and static), branch										
	prediction, out-of-order execution	n with respect to	o pipelined and superscalar p	processors.							
3.	Comprehend various Cache optin	nization technic	ques and discuss the hardwa	are and							
	software support for VLIW and EF	PIC systems.									
4.	Identify the concepts of High-Per	formance Com	puting, Distributed-Memory	/							
	Parallelism and Shared-Memory F	Parallelism.									
		UNIT-I									
Fund	amentals of Computer Design	n: Introduction	n, Classes of Computers,								
Meas	suring, reporting and summarizing	g performance,	quantitative principles of								
Comp	outer design.		of Intogor Arithmotic								
Eloat	ing Point: Floating-Point Multiplica:	tion Floating-P	oint Addition Division and								
Rema	ainder.	tion, mouting r	ont Addition, Division and	10 Hours							
		UNIT-II									
Instr	uction Level Parallelism, Its E	Exploitation a	nd Limits on ILP:								
Intro	duction To Pipelining, the major h	urdle of pipelir	iing-pipeline hazards,								
How	is pipelining implemented.										
ILP	and its exploitation: Concepts	and Challen	ges, Basic compiler								
techr	niques for exposing ILP, Reduc	ing branch c	ost with prediction,								
overo	coming data hazards with dyna	amic schedulir	ng, hardware based								
speci	ulation, exploiting ILP using mul	tiple issues ar	nd static scheduling,								
explo	iting ILP using Dynamic scheduli	na, multiple is	sue and speculation.								
adva	nced techniques for instruction deli	verv and snecu	lation. Case study								
of Po	ntium 4 Introduction to limits on I	P	action. Case study	10 Hours							
0110		UNIT-III		<u> </u>							
Title	Memory Hierarchy Design. S	torage Svster	ns: Review of basic								
conce	epts: Cross cutting issues in the design	an of memory h	nierarchies: Case study								
of AN	of AMD Onteron memory hierarchy										
Hard	Hardware and Software for VIIW and EDIC: Introduction: Evolution										
Instru	iction-Level Parallelism Statically	Detecting ar	ad Enhancing Loon-Level								
Paral	lelism. Scheduling and Structuring (Code for Paralle	lism. Hardware Support for								
				1							

Exposing Parallelism: Predicated Instructions, Hardware Support for										1	0Hours		
Com	Jiici	Speculation, the interior of A		iech			tarm		TOCC	3301.			
				UNI	T-IV								
Intro	duc	tion to High Performance Co	omp	outin	ig: V	Vhat	is h	igh p	perto	rmano	ce		
-Mot	ivət	ig: ion Applications Challenges											
HPC	Cor	nputer architecture models:	SIM	D. M	IIMD	.SPN	/D:						
HPC Communication models: Shared Address Space vs. Message Passing.													
Distr	ibu	ted-Memory Parallelism:	Ра	ralle	IA	Algo	rithr	n l	Desig	ın, İ	Paralle	el	
Progr	am	ming with MPI, The Message P	assi	ng P	rogr	amn	ning	Мо	del, k	olockii	ng vs.		
Non-	blo	cking communications, MPI pro	ogra	m A	nato	omy	& cc	omm	unica	ators,	MPI	1	.0 Hours
progi	ram	to Parallel Matrix Multiplicatio	n		T-V								
Shar	ad-l	Memony Parallelism: Basic Pat	torr		Dthr	bea	M	itua	Evel	usion	in		
Dthro	ade	Basic Patterns in OpenMP M			-luciz	on in	0, 0	onM	D	031011			
Hybr	ide	and Accelerators: Hybrid Arc	hita			/DI+	On	onM	г. Р_I	lco M	DI		
and ()na	nMP in the same application. Ir	otro	ducti	ion t		ор сор		r – C nnuti	ing wi	th		
		oprocessors – Overview of Inte	l'c X	/eon	Dhi	0 01			nput	ing wi	ui		
archit	n, C	ura introduction to programm	ina.	Into	гш Гс У (oonE	bi						
archi	leci	are, introduction to programm	ing	inte		UIIF						1	0 Hours
<u> </u>	(t-		<u>ن</u>	<u> </u>		4				
Cour	se (Dutcomes: At the end of the co	ours	e sti	laen	t WII	i be	able	e to				
1							4		•			6	
1.	ar	ithmetic.	rinci	pies	OT C	omp	outer	r des	lign a	ind to	pics o	t cor	nputer
2.	Kr	nowledge of Instruction level p	arall	lelisr	n, hı	urdle	s in	ILP,	and t	techni	ques t	o ex	ploit ILP.
3.	Ar	nalyze various techniques to im	noro	ve c	ache	per	form	nanc	e and	d iden	tifv th	e hai	rdware
	ar	nd software needed for VLIW a	nd E	PIC	arch	itect	ure.		0 0.110		en y en	0	arrai e
4.	Id	entify and explore the concept	s of	higł	n-pe	rforr	nano	ce co	ompu	iting a	and dis	stribu	uted
	m	emory parallelism.											
5. Realize the shared memory parallelism and GPU programming													
												1	
			-			'	5				1	2	
		1	2		3	3	3			2	3		
2			2		3	2	2			2	2		
		3	2		3	2	2			2	2		-
		4	3		2	3	3			2	3	2	
		5	3		2	3	3			2	3	2	

(Deemed to be University)

TEXT	BOOKS:
1	JohnL. Hennessey and David A. Patterson, Computer Architecture, A Quantitative
	Approach, 4th Edition, Elsevier, 2007.
2	Niranjan N. Chiplunkar and Raju K., Introduction to Parallel Computing. Wiley
	India,2020.
3	Michael J.Quinn, Parallel Programming in C with MPI and OpenMP,McGraw-
	Hill Higher Education 2003.
4	Jason Sanders and Edward Kandrot, CUDA by Example: An Introduction to General-
	PurposeGPU Programming, 2010.
REFEF	RENCE BOOKS:
1.	Ananth Grama, Introduction to parallel computing, Addison-Wesley 2nded., 2003.
2.	VictorEijkhout,IntroductiontoHigh-PerformanceScientificComputing,2011.
3.	http://web.stanford.edu/class/cme213/lecture.html:
	MPI,OpenMP,CUDAandXeonPhiprogramming.

OPERATING SYSTEMS AND VIRTUALIZATION	J

Cou	rse Code:	22CSE202	Course Type	PCC							
Tea	ching Hours/Week (L: T: P: S)	4+0+0+0	Credits	04							
Tota	al Teaching Hours	50	CIE + SEE Marks	50+50							
Cour	se Objectives:										
1.	To introduces Virtualization, oper	ating systems	fundamental concepts and i	ts							
technologies											
2. To provides skills to write programs that interact with operating systems co											
	such as Processes, Thread, Memo	ory during cond	current execution								
3.	To provide the skills and knowled	lge necessary t	to implement, provisioning a	ind							
	administer server and desktop vir										
<u> </u>			nterforce Clariford Muser								
Comp	buter system architecture a layere	ed view with i	nteriaces – Gieniora Myer,								
wond	mand core functionalities Process	Operations St	a architecture of operating								
Struc	turos (Procoss Control Plock(PCP)	Process Scho	duling: Multiloval Foodback								
Ouqu	e Multiprocessor Scheduling Dear	dlocks and its	detection								
Queu	e, Multiprocessor Scheduling, Deat			10 Hours							
Mana	and Introduction Address Spaces		Address Translation Deging								
Faste	r Translations (TLB), Smaller Tables.	. Virtual Memo	ry System inx86								
Conc	urrency - Introduction. Thread Mod	lels. Thread AP	I. Building Evaluating a Lock.								
Test	And Set. Two phase lock. Classic	al problems l	nandling using semaphore.								
Persis	stence- File Organization: The i-noc	de, Crash Cons	istency, file security.								
	5		<i></i>								
		UNIT-III		IUTIOUIS							
Virtua	al Machines - Process and Syst	em VMs Tax	onomy of VMs. Types of								
Virtua	alization, Hardware Emulation. Fu	ull Virtualizatio	on with binary translation.								
Hard	ware assisted, Operating Syste	em Virtualiza	tion, OS assisted /Para								
virtua	lization.			10.11							
				10 Hours							
Macc	storago structuros: storago dovico		swan-snaco managomont								
Imple	menting file system: file system	m concents	file system structure and								
apprenditions Hypernison Type 1 Type 2 Para virtualization Server Virtualization											
Πρείν	on Virtualization	⊆, i uiu viitudii.									
DESKI				10 Hours							

UNIT-V

Security: Program threats, System and network threats. Protection: Principles of protection, role based access control, Mandatory access control. Overview VM portability- Clones, Templates, Snapshots, OVF, Hot And Cold Cloning Protecting Increasing Availability, Lightweight Virtual machine: Container /Docker.

10 Hours

Course Outcomes: At the end of the course student will be able to

- **1.** Study operating system layers and kernel architectures
- 2. Design various techniques for process management
- 3. Construct various address translation mechanism
- **4.** Perform process threading and synchronization
- **5.** Study various methods of virtualization and perform desktop and server virtualization
- **6.** Classify the light-weight virtual machines with dockers and containers
- **7.** Develop programs related to the simulations of operating systems and virtualization concepts

	1	r								
Program Outcomes→	1	2	3	4	5	6	7	8	PSC	D↓
↓ Course Outcomes									1	2
1	2	3	1				1	З	1	1
2	3	3				1		3		1
3	3	3	2					2	2	
4	3	3		2				3	2	
5	3	3	2	2	2			З	1	3

TEXTBOOKS:

- **1.** Thomas Anderson, Michael Dahlin, Operating Systems: Principles and Practice, Second Edition, Recursive Books,2014
- 2. Matthew Portnoy, Virtualization Essentials, John Wiley Sons Inc; 2nd Edition, 2016
 3.

REFERENCE BOOKS:

- **1.** William Stallings, Operating Systems: Internals and Design Principles, 8thEdition
- A.Silberschatz and P.Galvin. Operating System Concepts. Eight Edition, John Wiley Sons, 2008
- **3.** Smith, Nair, Virtual Machines: Versatile Platforms for Systems and Processes, Morgan Kaufmann Publishers(2005)

Parallel Computing Lab												
Cou	rse Code:		22CSE203	Course Type:	PCC Lab							
Tea	ching Hours/V	Veek (L: T: P: S):	0+0+2+0	Credits:	01							
Tota	al Teaching H	ours:	2	CIE + SEE Marks:	50+50							
Cour	se Objectives:											
	1											
1.	To develop C	penMP programs.										
2.	To develop N	1PI programs.										
3. To develop CUDA programs.												
4. To profile parallel programs.												
		Lis	t of Experime	nts								
1	OpenMP	Sample Programs Tin	ne estimation									
2	Develop a	sample Programs Till		nvironment Routines and	l write							
_	interesting	observations by co	mparing variou	is routines								
3	. Develop a	program using follo	wing construc	t and describe scenario fo	r the need of							
	construct	Parallel Construct										
4	. Determini	ng the Number of Th	nreads for a pa	rallel Region Work-sharin	g Constructs							
5	. Loop cons	truct Sections consti	ruct Single con	struct Schedule clause Sta	atic Dynamic							
	Guided		C		-							
6	. Data Envir	onment Constructs	Shared Clause	Critical Construct Reducti	on Clause							
	Master Co	nstruct No Wait Clau	use Barrier Cor	struct Atomic Construct								
7	. Analysis th	nrough any one of pr	rofiling tools (I	TAC/VTune/EEP/IIP) Expe	rimental setup							
8	. Parallelizir	ng given serial progra	am into paralle	•								
9	. Analyzing	parallel programs										
1	0. CUDA pro	gramming										
1	1. Write a CL	JDA C/C++ program	that add two	array of elements and sto	re the result							
	in third ar	ray										
1	2. How to Re	verse Single Block in	n an Array usin	g CUDA C/C++								
1	3. CUDA C p	rogram for Matrix ac	altion and Mil	tion Modify your program	memory							
-	4. While COL	actor of arbitrary size		tion. Moully your program	II SO that it can							
			-									
Cour	se Outcomes:	At the end of the co	urse student w	vill be able to								
1.	Develop shar	ed memory parallel	programs usin	g OpenMP directives.								
2.	Develop dist	ributed memory para	allel programs	using MPI APIs.								
3.	Develop GPL	parallel programs u	sing CUDA-C	APIs.								
4.	Profile paralle	el programs using V	Fune									
5.	Analyze para	llel programs										

	Program Outcomes→	1	2	3	4	5	6	7	8	PSC	C↓	
	↓ Course Outcomes									1	2	
	1	2	2	2	3	3	2		2	3	2	
	2	2	2	2	3	3	2		2	3	2	
	3	2	2	2	3	3	2		2	3	2	
	4	2	2	2	3	3	2		2	3	2	
	5	2	2	2	3	3	2		2	3	2	
REFERENCE BOOKS:												
1.	1. Niranjan N. Chiplunkar and Raju K., Introduction to Parallel Computing. Wiley											
	India,2020.											
2	David Kirk and Wen-Mei W.Hwu, Programming Massively Parallel Processors: A Hands-on Approach, 2010.											
3	3 Jason Sanders and Edward Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Programming, 2010.											
E Resou	rces											
1.	http://web.stanford.edu/class Phi programming.	/cm	e213	/lect	ture.	htm	I: MF	PI, Op	oenMF	P, CUE)A ar	ıd Xeon
2	Introduction to MPI (SHARCN	IET).	Onli	ne:								
-	https://www.voutube.com/wa	tch?	v=R		Nx5r	F4מו						
3	Introduction to MPI program	mino	a, bv	Hris	to Il	iev, l	HPC	Grou	, RW	/TH A	ache	n
-	University. Online:	-	<i>,</i> - <i>,</i>			- /			1- /			
	https://www.voutube.com/ch	anne	el/U	CtdrE	Eoe4	6tD2	2Iv]]	Rs JH	11A/vi	deos		
4	Introduction to OpenMP - Tir	n Ma	attsc	n (Ir	ntel).	Onl	ine:		,			
	https://www.voutube.com/pla	vlist	:?	(
	list=PLLX-Q6B8xaZ8n8bwiGd	zBJ2	5X2	utwr	noEG	i						
5	CUDA Training Resources by	NVII	DIA.	Onli	ne:							
	https://developer.nvidia.com/	′edu	cato	rs/e>	kistir	na-co	ours	es				

		Operating Syst	tem	is a	nd \	/irt	uali	zati	ion	Lab			
Cou	rse	Code:	22	2CSE	204				C	ourse	Type:	PC	C Lab
Teac	chir	ng Hours/Week (L: T: P: S):	0	+0+	2+0					Cred	lits:	01	
Tota	al T	eaching Hours:	2					(CIE +	SEE I	Marks:	50-	+ 50
Cours	se (Objectives:	_									<u>.</u>	
1.	1. To study basics of linux commands and execution of shell scripts.												
2.	2. To study various scheduling algorithms and bankers algorithms.												
3.	3. To analyse various dynamic memory allocation algorithms.												
4.	Тс	implement various page repla	acen	nent	algo	orith	ms.						
	List of Experiments												
-													
1.	•	Study of Basic Linux Comman	ds ·						1.1.1			<u> </u>	
2.	•	Shell Programming (I/O, Decis	sion	mak	tang,	LOO	ping	, ML	ilti-le	vel br	anching	<u>g)</u>	
Э.	•	creation	ΟΓΚ() sys	tem	Call,	Οſρ	nan	anu	Zomb	ne proc	ess	
4		Simulation of CPU scheduling	alg	orith	ms (FCF	5.51	F. Pr	ioritv	and I	Round I	Robir	ו)
5.		Simulation of Banker's algorit	hm t	to ch	neck	whe	ther	a di	ven s	vsten	n is in s	afe st	tate or
	-	not. Also check whether addit	ion	reso	urce	requ	uest	ed ca	an be	e gran	ted imr	nedia	ately
6.		Parallel Thread management	usin	g pt	hrea	d lib	rary.	Imp	leme	ent a d	data pa	ralleli	ism
		using multi-threading		51			,				•		
7.		Dynamic memory allocation a	Igor	rithm	ns - F	irst-	fit, E	Best-	fit, W	/orst-	fit algoi	rithm	S
8.	•	Page Replacement Algorithms	s FIF	0, L	RU a	nd C	Dptir	mal					
9.	•	Virtualization Setup: Type-1, 1	уре	-2 H	yper	viso	r						
1	0.	Implementation of OS / Serve	r Vii	rtual	izatio	on							
-													
Cours	se (Dutcomes: At the end of the co	ours	e sti	iden	t wil	l be	able	to				
1	C+	udu various shall scripts and s		aand		<u> </u>							
1. 2		ady various shell scripts and co	thm		usa	ge.							
2.		esign various scheddling algori	orit	hmc	hase	ad o	n fire	t fit	host	fit ar	nd wors	t fit	
	al	aorithms	Unt		5030			50 110,	0031	ai			
4		evelon various nage replaceme	nt a	alaor	ithm	c							
5		evelop various page replaceme		igui		5.							
	1												1
		Program Outcomes→	1	2	3	4	5	6	7	8	PSO		
			_				-		-	-	1	2	
		1	2	3	1				1	3	1	1	
		2	3	3	1			1		3		1	
		3	3	3	2	2				3	2		

3 4

3 3

3 3

2

3 3

2

RESEARCH EXPERIENCE THROUGH PRACTICE -2										
Course Code:	22CSE205	Course Type	RETP							
Teaching Hours/Week (L: T: P: S)	0:0:4:0	Credits	2							
Total Teaching Hours	52	CIE	100							
Teaching Department:										
Course Objectives: The research purpe	oses are									
 To foresee future problems th excellence for intellectual creative To respond to current social de development of scientific techn society and natural environment At the same time, the course ain an excellent educational environ To Understand professional wri analyzing quantifiable data disco professional workplace docume 	rough pursuit vity". emands, and to nologies with to t for humanity. ns to create exc ment through iting and comr overed by resea nts.	of truth as a "global cent o contribute to the creation the aim of realizing an af- cellent educational resource frontline research. nunication contexts and go rching, and constructing fir	tre of n and fluent es and enres, iished							
The students are expected to carry out l simulations/Preliminary experimentation	Mathematical n n/testing of th	nodeling/Design calculation e research problems iden	ns/computer tified during							

Research Experience through Practice-I carried out in the first semester.

At the end of the second semester, students are expected to submit a full research paper based on the Mathematical modelling/ Design calculations/computer simulations/Preliminary experimentation/testing carried out during second semester.

The research paper prepared based on the work carried out by the PG Student is evaluated for 50 marks and 20 minutes presentation on the research work carried out will be evaluated for 50marks jointly by the examiners.

Cour	rse Outcomes: At the end of the c	ours	e sti	ıden	t wil	l be	able	e to			
1.	1. Create a model/prototype through fabrication, simulation, data analysis,										
	Experimentation for the proposed problem.										
2.	Analyse and validate the results obtained.										
3.	Compose a technical paper as per the given format.										
Cour	se Outcomes Mapping with Pro	gran	n Oı	itcoi	mes	& P	so				
		-									
	Program Outcomes \rightarrow 1 2 3 4 5 6 7 8 PSO										
	Program Outcomes→	1	2	3	4	5	6	7	8	PS	O↓
	Program Outcomes→ ↓ Course Outcomes	1	2	3	4	5	6	7	8	PS	O ↓ 2
	Program Outcomes→ ↓ Course Outcomes 1	1	2	3	4	5	6	7	8	PS 1 3	0 ↓ 2 2
	Program Outcomes→ ↓ Course Outcomes 1 2	1 3 3	2 2 2 2	3	4	5	6	7	8	PS 1 3 2	0 ↓ 2 2
	Program Outcomes→ ↓ Course Outcomes 1 2 3	1 3 3 3	2 2 2 2	3	4	5	6	7	8 3	PS 1 3 2	0 ↓ 2 2
REFE	Program Outcomes→ ↓ Course Outcomes 1 2 3 RENCE BOOKS:	1 3 3 3	2 2 2 2	3	4	5 3	6	7	8 3	PS 1 3 2	0↓ 2 2 1

DISTRIBU	TED OPERATING	SYSTEM	
Course Code:	22CSE211	Course Type:	PEC
Teaching Hours/Week (L: T: P: S):	3+0+0+0	Credits:	03
Total Teaching Hours:	40	CIE + SEE Marks:	50+50
Course Objectives:			
1			
1. To understand the concept of	a distributed operati	ng system.	
2. To know about the distributed	file system and shar	ed memory.	
3. To understand the security issu	ues in distributed sys	items.	
4. To make a case study of some	real-time systems.		
	UNIT-I		1
Distributed System management:	Introduction, Reso	urce management,	
Task Assignment Approach, Load	d-Balancing Approa	ach, Load-Sharing	
Approach, Process management in	a Distributed Env	vironment, Process	
Migration, Threads, Fault Tolerance.			
Distributed Shared Memory: Intro	duction, Basic Cond	cepts of DSM,	
Hardware DSM, Design Issue in DSM	A Systems, Issue in	Implementing	
DSM Systems. Heterogeneous and ot	her DSM Systems. C	ase	
Studies	, , -		15 Hours
	UNIT-II		
Distributed File System: Introduction	n to DFS, File Model	s, Distributed File	
System Design, Semantics of File Shar	ring, DFS Implement	ation, File Caching in	
DFS, Replication in DFS, Case studies.	Naming: Introductio	on, Desirable	15Hours
	· · · · · ·	· · · ·	1
features of a good naming system, Ba	isic concepts, Systen	n- oriented names,	
Object-locating mechanisms, issues in	i designing numan-o	onvico	
caches, Naming and security, case su	UNIT-III	ervice.	
Security in distributed systems	Introduction Crypt	ography Secure	
channels Access control Security Ma	nagement Case stur	dias	
Real-Time Distributed Operating Sy	stems: Introduction	, Design issues in	10 Hours
real-time distributed systems, Rea	altime communicati	ion, Real- time	To Hours
scheduling, Case study: Real-tim	ne communication	in MAR.	
Course Outcomes: At the end of the	course student will I	pe able to	
1. Explain the DS concepts.			
2. Explain the working of distribu	ted shared memory.		
3. Demonstrate the application o	f a distributed file sy	stem.	

- **4.** Explain the security issues in distributed systems.
- 5. Make a case study of distributed systems.

NITTE (Deemed to be University)

	Program Outcomes→	1	2	3	4	5	6	7	8	PSC	D↓	
	↓ Course Outcomes									1	2	
	1	З		3	3	3				3		
	2	3		3	3	3				3		
	3	З		3	3	3				3		
	4	З		3	3	3				3		
	5	3		3	3	3				3		
TEXTE	BOOKS:											
1.	Pradeep. K. Sinha: Distributed O	pera	ating	Sys	tems	s: Co	nce	ots ai	nd De	sign, F	PHI, 2	2007.
REFER	REFERENCE BOOKS:											
1.	Andrew S. Tanenbaum: Distribu	ted (Эреі	ratin	g Sy	sten	ns, P	earsc	on Edu	catior	n, 201	13.

DEEP LEARNING									
Cou	rse Code:	22CSE212	Course Type	PEC					
Teac	hing Hours/Week (L: T: P: S)	3 Hours	Credits	03					
Tota	I Teaching Hours	40	CIE + SEE Marks	50+50					
	Teaching Department	t: Computer S	cience & Engineering						
Course Objectives:									
1.	Understand the context of neural	networks and	deep learning						
2.	Understand the data needs of de	ep learning	· · · · · ·						
3.	Have a working knowledge of ne	ural networks	and deep learning						
4.	Explore the parameters for neura	l networks	-						
		UNIT-I							
Intro	duction: What is Deep Learning	g? What are	Neural Networks? Neural						
netwo	orks basics: cost functions, hypoth	neses and tasl	ks; training data; maximum						
likelih	ood-based cost, cross entropy, MS	SE cost; feed-fo	prward networks; MLP,	15.00					
sigmo	oid units; neuroscience inspiration;			15 Hours					
Neura	al Networks Training: Learning ir	n neural netwo	ork: output vs hidden layers;						
linear	vs nonlinear networks; Backpro	pagation: lear	ning via gradient descent;						
recurs	sive chain rule (backpropagat	ion); if time	e: bias-variance tradeoff,						
regula	arization; output units: linear, softm	hax; hidden un	its: tanh, RELU; Deep						
learni	ng strategies: GPU training, regula	rization, RLUs,	dropout.						
Com	alution Nouval Naturation Invo	UNIT-II	ty Variability models	T					
(defe	mation medial stachastic ma	dal) Scattoriu	ly, variability models						
(deloi	alism Properties of CNN rep	uei), Scatterii rocontations:	ipvortibility stability						
invari	anshi, Properties of Civil Tep	les and related	d models Connections						
with	other models: dictionary learning	ng LISTA lo	calization regression						
Embe	ddings (Drl im) inverse problems	Fytensions to r							
Euclid	lean domains.			15 Hours					
		UNIT-III		<u>I</u>					
Deep	Neural Networks for Sequences	: Recurrent Ne	ural Networks: RNN	1					
for la	nguage modelling and other tasks,	GRUs and LST	Ms for machine						
transl	ation, LSTM, GRU			10 Hours					
Cours	se Outcomes: At the end of the co	urse student v	vill be able to						
	1								
1.	Identify the deep learning algorit	hms which are	more appropriate for variou	s types of					
	learning tasks in various domains								
2.	Implement deep learning algorith	nms and solve	real-world problems.						
3.	Execute performance metrics of D	Deep Learning	Techniques.						
4.	Explore the parameters for neural	l networks.							

N	(Deemed to be	TE University)
	5.	Apply the

5.	Apply the CNN and RNN for solving	g the	engineering	problems.
----	-----------------------------------	-------	-------------	-----------

5. Apply the CNN and RNN for solving the engineering problems.												
	Program Outcomes \rightarrow	1	2	3	4	5	6	7	8	PS	O↓	
	↓ Course Outcomes									1	2	
	1	3								3		
	2			3	2					3	3	
	3	3		2		3					3	
	4	3		2							3	
	5	3	1	2	2	3					3	
TEXTE	BOOKS:											
1.	L. Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning, The MIT Press,											
	2016.											
REFER	REFERENCE BOOKS:											
1.	Duda, R.O., Hart, P.E., and Stork,	D.G	i. , Pa	atter	n Cla	assif	icati	on, V	Viley-I	ntersc	ience	<u>ڊ</u>
	2nd Edition. 2001.											
2.	Theodoridis, S. and Koutroumba	as, K	., Pa	ttern	Rec	cogn	ition	. Edi	tion 4,	Acad	emic	
	Press, 2008.											
3.	Russell, S. and Norvig, N, Artifici	ial Ir	ntelli	geno	e: A	Мо	dern	Арр	roach	, Pren	tice H	lall
	Series in Artificial Intelligence. 2	003.		-								
4.	Bishop, C. M., Neural Networks	for F	Patte	rn R	ecod	gniti	on, C	Dxfor	d Univ	/ersity	Pres	S.
	1995.											
5.	5. Hastie, T., Tibshirani, R. and Friedman, J., The Elements of Statistical Learning.											
	Springer, 2001.											
E Books / MOOCs/ NPTEL												
1.	http://cs224d.stanford.edu/svlla	bus.	htm									
	https://www.cs.colorado.edu/~r	noze	er/Te	each	ing/s	sylla	bi/D	eepL	earnin	ngFall2	2017	

OBJECT ORIENTED DESIGN

Cou	rse	Code:	22	2CSE	213		Cou	irse	Туре	9		P	PEC
Teac	hir	ig Hours/Week (L: T: P: S)	3	Hou	Irs		Cre	dits				0	3
Tota	ΙΤ	eaching Hours	40	0			CIE	+ S	EE M	arks		5	0+50
Cours	se C	Objectives:											
	1												
1.	Id	entify the heuristics of the obj	ect-o	orien	ted	prog	jram	min	g				
2.	Ex	plain the fundamentals of OO	Ρ										
3.	Ex	amine fine object-oriented rel	atio	ns									
4.	Ex	plain the role of Physical Obje	ct-O	rien	ted [Desi	gn,						
5.	Μ	ake use of Heuristics in The Us	e of	Heu	ıristi	cs in	Obj	ect-	Orier	nted D	Design		
				UN	IT-I								
The N	Not	tivation for Object-Oriented	Prog	gran	nmin	g, C	Class	es a	and	Objec	ts: Th	е	
Dulla													
Objec	Object-Oriented Paradigm, Topologies of Action-Oriented Versus Object- Oriented												
Applications, The Relationships Between Classes and Objects the Inheritance													
											LO HOUIS		
N Audtin													
Multiple Inneritance, The Association Relationship, Class-Specific Data and										r	15 Hours		
Denav	101	, Physical Object-Offented Des	ign.		T 111								
The P	مام	tionship Potwoon Houristics on			I-Ш	bol		fЦс	urict	icc in			
Object	eia + C	nionship between neuristics an	u Pa	atter	115, 1	ne c	ise o	ппе	unst				
Objec	1-C	fiented Design											
Cours	se C	Dutcomes: At the end of the co	ours	e stu	ıden	t wil	l be	able	to				
						-							
1.	Id	entify and make use of the he	uristi	ics ir	n obj	ect-	orier	nted	proc	gramn	ning.		
2.	To	explain the fundamentals of (DOP	and	the	role	of F	hysi	ical o	bject	oriente	ed c	design.
3.	Тс	examine the object-oriented	relat	tions	bet	wee	n he	urist	ics a	nd pa	tterns.		
		5											I
		Program Outcomes→	1	2	3	4	5	6	7	8	PSC		7
		Course Outcomes	_		-	-	-	-	_	_	1	2	-
		1	2	1	1			2		1	1	1	
		2	3	2	1			2		1	1	1	1
		3	3	2	1			2		1	1	1	1
TEXT	BO	OKS:									· · · · · ·		-
1.	0	bject Oriented Design Heurist	ics, A	Arthu	ır J F	Riel, J	Addi	son	-Wes	ley 19	96.		
REFE	REN	ICE BOOKS:											
1.	E	ements of Reusable Object- O	rien	ted S	Softv	vare							
2.	Jo	ohn Vlissides Pearson Object -	Orie	entec	d Mc	deli	ng a	nd D	Desig	n with	NUM P	ape	erback,
	Michael R. Blaha)												

Γ

DISTRIBUTED SYSTEMS

Teaching Hours/Week (L: T: P: S) 3 Hours Credits 03 Total Teaching Hours 40 CIE + SEE Marks 50+50 Course Objectives: Cie + SEE Marks 50+50 Carres Addition: Carres Addition: Cie + SEE Marks 50+50 Carres Addition: Carres Addition: Cie + SEE Marks 50+50 Carres Addition: Carres Addition: Cie + SEE Marks 50+50 Corres of distributed system: - Cie + Set Marks Scie + Set Marks 50+50 Car	Course Code: 22CSE214 Course Type P									
Total Teaching Hours 40 CIE + SEE Marks 50+50 Course Objectives: I To learn the principles, architectures, algorithms and programming models used in distributed systems. In a construction of the construction of	Теа	ching Hours/Week (L: T: P: S)	3 Hours	Credits	03					
Course Objectives: 1. To learn the principles, architectures, algorithms and programming models used in distributed systems. 2. To examine state-of-the-art distributed systems, such as Google File System. 3. To design and implement sample distributed systems. UNIT-1 Overview of distributed system - examples of distributed systems: client -server architecture - WWW peer to peer - Napster -Bit torrent - mobile and ubiquitous computing -System Model: Physical model - architectural model - fundamental models External data representation- marshalling - un-marshalling- Message passing-group communication: Publish-subscribe system - message queues - shared memory approach. Remote procedure call - distributed objects-communication between distributed objects - RMI - JSON-RMI Process - Events- states - partial and total ordering - Synchronizing - physical clock synchronization - Christians algorithm- Berkeley algorithm - NTP - logical clocks - castar and vector clock - lamport logical clock for partial and total ordering - sonsistent cut - inconsistent cut - global states - lamport global snapshot algorithm. UNIT-II Distributed deadlock - Resource allocation model - requirements and beerformance metrics of distributed mutual exclusion algorithm - Gassification - bully election algorithm - Gassification - bully election algorithm - Markaa' svoting algorithm message based - Ricart Agrawala algorithm: token based - Raymond tree algorithm - quorum based : mekawa' svoting algorithm message base	Tota	al Teaching Hours	40	CIE + SEE Marks	50+50					
1. To learn the principles, architectures, algorithms and programming models used in distributed systems. 2. To examine state-of-the-art distributed systems, such as Google File System. 3. To design and implement sample distributed systems. UNIT-I Overview of distributed system – examples of distributed systems: client -server architecture – WWW peer to peer – Napster –Bit torrent - mobile and ubiquitous computing –System Model: Physical model – architectural model – fundamental models External data representation- marshalling – un-marshalling- Message passing-group communication: Publish-subscribe system – message queues – shared memory approach. Remote procedure call – distributed objects-communication between distributed objects – RMI – JSON-RMI Process – Events- states – partial and total ordering – Synchronizing- physical clock synchronization - Christians algorithm - Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. UNIT-II Distributed deadlock – Resource allocation model - requirements and berformance metrics - classification of distributed deadlock detection algorithm. UNIT-II Distributed Mutual exclusion algorithm – bistributed mutual exclusion algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm – Election – ring based election – bully election algorithm – Matra and performance metrics of distributed mutual exclusion algorithm –	Cour	se Objectives:			<u> </u>					
1. To learn the principles, architectures, algorithms and programming models used in distributed systems. 2. To examine state-of-the-art distributed systems, such as Google File System. 3. To design and implement sample distributed systems. UNIT-I Overview of distributed system - examples of distributed systems: client -server architecture - WWW peer to peer - Napster -Bit torrent - mobile and ubiquitous computing -System Model: Physical model - architectural model - fundamental models External data representation- marshalling - un-marshalling- Message passing-group communication: Publish-subscribe system - message queues - shared memory approach. Remote procedure call - distributed objects-communication between distributed objects - RMI - JSON-RMI Process - Events- states - partial and total ordering - Synchronizing - physical clock synchronization - Christians algorithm - Berkeley algorithm - NTP - logical clocks - scalar and vector clock - lamport logical clock for partial and total ordering - consistent cut - inconsistent cut - global states - lamport global snapshot algorithm. UNIT-II Distributed deadlock - Resource allocation model - requirements and serformance metrics - classification of distributed deadlock detection algorithm. Distributed Mutual exclusion - requirements and serformance metrics of distributed mutual exclusion algorithm - Multicast communication. 15 Hours UNIT-II Dittributed full System - File service Architecture- NFS - GFS </td <td></td> <td></td> <th></th> <th></th> <td></td>										
distributed systems. 2. To examine state-of-the-art distributed systems, such as Google File System. 3. To design and implement sample distributed systems. UNIT-1 Overview of distributed system – examples of distributed systems: client -server architecture – WWW peer to peer – Napster –Bit torrent - mobile and ubiquitous computing –System Model: Physical model – architectural model – fundamental models External data representation- marshalling – un-marshalling- Message passing-group communication: Publish-subscribe system – message queues – shared memory approach. Remote procedure call – distributed objects-communication between distributed objects – RMI – JSON-RMI Process – Events- states – partial and total ordering – Synchronizing- physical clock synchronization- Christians algorithm- Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. UNIT-II UNIT-II Distributed deadlock – Resource allocation model - requirements and serformance metrics - classification of distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and serformance metrics of distributed mutual exclusion – glorithm – quorum pased : mekawa' svoting algorithm message based – Ricart Agrawala algorithm: token based – Raymond tree algorithm – quorum pased : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm – totart deramation. 15 Hours Distributed fu	1.	To learn the principles, architectu	ires, algorithms	and programming models	used in					
 To examine state-of-the-art distributed systems, such as Google File System. To design and implement sample distributed systems. UNIT-I Overview of distributed system – examples of distributed systems: client -server architecture – WWW peer to peer – Napster –Bit torrent - mobile and ubiquitous computing –System Model: Physical model – architectural model – fundamental models External data representation- marshalling – un-marshalling- Message passing-group communication: Publish-subscribe system – message queues – shared memory approach. Remote procedure call – distributed objects-communication between distributed objects – RMI – JSON-RMI Process – Events- states – partial and total ordering – Synchronizing - physical clock synchronization - Christians algorithm - Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. UNIT-II Distributed deadlock – Resource allocation model - requirements and berformance metrics - classification of distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and berformance metrics of distributed mutual exclusion – requirements and berformance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm – Stare Based –Ricart Agrawala algorithm – Election – ring based election – bully election algorithm Multicast communication. Dytimistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant ervices: the gossip architecture - Name services: DNS – Directory Services: C500 protocol – Distributed file System –File service Architecture - NFS - GFS Distributed locking mechanism- Distributed 		distributed systems.								
3. To design and implement sample distributed systems. UNIT-I Overview of distributed system – examples of distributed systems: client -server architecture – WWW peer to peer – Napster –Bit torrent - mobile and ubiquitous computing –System Model: Physical model – architectural model – fundamental models Computing –System Model: Physical model – architectural model – fundamental models External data representation- marshalling – un-marshalling- Message passing-group communication: Publish-subscribe system – message queues – shared memory approach. Remote procedure call – distributed objects-communication between distributed objects – RMI – JSON-RMI Process – Events- states – partial and total ordering – Synchronizing- physical clock synchronization - Christians algorithm- Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. Distributed deadlock – Resource allocation model - requirements and berformance metrics - classification of distributed deadlock detection algorithm. – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion algorithm- Quorum based - Raymond tree algorithm – quorum ased : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm - Muticast communication. 15 Hours UNIT -III Dytimistic and pessimistic transactions -Two – phase commit protocol – three phase commit pro	2. To examine state-of-the-art distributed systems, such as Google File System.									
UNIT-1 Overview of distributed system – examples of distributed systems: client -server architecture – WWW peer to peer – Napster –Bit torrent - mobile and ubiquitous computing –System Model: Physical model – architectural model – fundamental models External data representation- marshalling – un-marshalling- Message passing-group communication: Publish-subscribe system – message queues – shared memory approach. Remote procedure call – distributed objects-communication between distributed objects – RMI – JSON-RMI Process – Events- states – partial and total ordering – Synchronizing - physical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. 15Hours Distributed deadlock – Resource allocation model - requirements and serformance metrics - classification of distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and serformance metrics of distributed mutual exclusion algorithm – Bercetion – ring based election – bully election algorithm – Staributed mutual exclusion algorithm – Election – ring based election – bully election algorithm – Staributed Mutual exclusion – phase commit protocol – three ohase commit protocol – Transaction recovery - Replication – fault tolerant services: the gossip architecture- Name services: DNS – Directory Services: 15 Hours	3.	To design and implement sample	e distributed sy	stems.						
Overview of distributed system – examples of distributed systems: client -server architecture – WWW peer to peer – Napster –Bit torrent - mobile and ubiquitous computing –System Model: Physical model – architectural model – fundamental models External data representation- marshalling – un-marshalling- Message passing-group communication: Publish-subscribe system – message queues – shared memory approach. Remote procedure call – distributed objects-communication between distributed objects – RMI – JSON-RMI Process – Events- states – partial and total ordering – Synchronizing- physical clock synchronization - Christians algorithm- Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. Distributed deadlock – Resource allocation model - requirements and performance metrics - classification of distributed deadlock detection algorithm. Distributed Mutual exclusion algorithm- Distributed mutual exclusion algorithm. Distributed mutual exclusion algorithm – quorum pased : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm – Multicast communication. 15 Hours UNIT-II Distributed and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services: the gossip architecture- Name services: DNS – Directory Services: 0.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	UNIT-I									
architecture – WWW peer to peer – Napster –Bit torrent - mobile and ubiquitous computing –System Model: Physical model – architectural model – fundamental models External data representation- marshalling – un-marshalling- Message passing- group communication: Publish-subscribe system – message queues – shared memory approach. Remote procedure call – distributed objects-communication between distributed objects – RMI – JSON-RMI Process – Events- states – partial and total ordering – Synchronizing- physical clocks synchronization- Christians algorithm- Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. 15Hours Distributed deadlock – Resource allocation model - requirements and performance metrics - classification of distributed deadlock detection algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion algorithm- Distributed mutual exclusion algorithm: token based –Raymond tree algorithm – quorum pased : mekawa' svoting algorithm message based – Ricart 15 Hours Multicast communication. UNIT-III Difficit and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: 15 Hours	Over	view of distributed system – exam	ples of distrib	uted systems: client -server						
computing –System Model: Physical model – architectural model – fundamental models External data representation- marshalling – un-marshalling- Message passing- group communication: Publish-subscribe system – message queues – shared memory approach. Remote procedure call – distributed objects-communication between distributed objects – RMI – JSON-RMI Process – Events- states – partial and total ordering – Synchronizing- physical clock synchronization- Christians algorithm- Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. UNIT-II Distributed deadlock – Resource allocation model - requirements and berformance metrics - classification of distributed deadlock detection algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and berformance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm - Multicast communication. UNIT-III Diffict and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: (.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	architecture – WWW peer to peer – Napster –Bit torrent - mobile and ubiquitous									
models External data representation- marshalling – un-marshalling- Message passing- group communication: Publish-subscribe system – message queues – shared memory approach. Remote procedure call – distributed objects-communication between distributed objects – RMI – JSON-RMI Process – Events- states – partial and total ordering – Synchronizing- physical clock synchronization- Christians algorithm- Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. 15Hours Distributed deadlock – Resource allocation model - requirements and performance metrics - classification of distributed deadlock detection algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion algorithm- Distributed mutual exclusion algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm - Multicast communication. 15 Hours Distributed and pessimistic transactions rTwo – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: (.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	comp	outing –System Model: Physical m	odel – archited	tural model – fundamental						
External data representation- marshalling – un-marshalling- Message passing- group communication: Publish-subscribe system – message queues – shared memory approach. Remote procedure call – distributed objects-communication between distributed objects – RMI – JSON-RMI Process – Events- states – partial and total ordering – Synchronizing- physical clock synchronization- Christians algorithm- Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm.	mode	els								
group communication: Publish-subscribe system – message queues – shared memory approach. Remote procedure call – distributed objects-communication between distributed objects – RMI – JSON-RMI Process – Events- states – partial and total ordering – Synchronizing- physical clock synchronization- Christians algorithm- Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. UNIT-II Distributed deadlock – Resource allocation model - requirements and performance metrics - classification of distributed deadlock detection algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and performance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm: token based –Raymond tree algorithm– quorum pased : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm - Multicast communication. UNIT-III Optimistic and pessimistic transactions r-Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: (.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	Exter	nal data representation- marshall	ling – un-mars	halling- Message passing-						
memory approach. Remote procedure call – distributed objects-communication between distributed objects – RMI – JSON-RMI Process – Events- states – partial and total ordering – Synchronizing- physical clock synchronization - Christians algorithm - Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. UNIT-II Distributed deadlock – Resource allocation model - requirements and performance metrics - classification of distributed deadlock detection algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and performance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm: token based –Raymond tree algorithm- quorum pased : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm - Multicast communication. UNIT-III Diffinistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: (.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	grou	p communication: Publish-subscri	ibe system –	message queues – shared						
between distributed objects – RMI – JSON-RMI Process – Events- states – partial and total ordering – Synchronizing- physical clock synchronization- Christians algorithm- Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. UNIT-II Distributed deadlock – Resource allocation model - requirements and performance metrics - classification of distributed deadlock detection algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and performance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm puorum pased : mekawa' svoting algorithm message based – Ricart 15 Hours Multicast communication. UNIT-III Optimistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: K.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	mem	ory approach. Remote procedure	call – distribu	ted objects-communication						
Process – Events- states – partial and total ordering – Synchronizing- physical clock synchronization- Christians algorithm- Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. UNIT-II Distributed deadlock – Resource allocation model - requirements and performance metrics - classification of distributed deadlock detection algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and performance metrics of distributed mutual exclusion algorithm – Distributed mutual exclusion algorithm: token based –Raymond tree algorithm– quorum pased : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm - Multicast communication. UNIT-III Dytimistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: K.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	betw	een distributed objects – RMI – JSC	ON-RMI	2						
Process – Events- states – partial and total ordering – Synchronizing- physical clock synchronization- Christians algorithm- Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. UNIT-II Distributed deadlock – Resource allocation model - requirements and performance metrics - classification of distributed deadlock detection algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and performance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm: token based –Raymond tree algorithm– quorum pased : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm - Multicast communication. UNIT-III Dytimistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: K.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed										
synchronization - Christians algorithm - Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm. UNIT-II Distributed deadlock – Resource allocation model - requirements and performance metrics - classification of distributed deadlock detection algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and performance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm: token based –Raymond tree algorithm– quorum pased : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm - Multicast communication. UNIT-III Optimistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: K.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	Proce	ess – Events- states – partial and tot	al ordering – S	nchronizing- physical clock						
scalar and vector clock – lamport logical clock for partial and total ordering – Isthours consistent cut – inconsistent cut – global states – lamport global snapshot 15Hours algorithm. UNIT-II Distributed deadlock – Resource allocation model - requirements and performance metrics - classification of distributed deadlock detection algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and performance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm- Quorum pased : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm - Multicast communication. UNIT-III Optimistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: X.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	synch	nronization- Christians algorithm- E	Berkeley algorit	hm – NTP – logical clocks –						
consistent cut – inconsistent cut – global states – lamport global snapshot 15Hours algorithm. UNIT-II Distributed deadlock – Resource allocation model - requirements and performance metrics - classification of distributed deadlock detection algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and performance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm: token based –Raymond tree algorithm– quorum pased : mekawa' svoting algorithm message based – Ricart 15 Hours Agrawala algorithm – Election – ring based election – bully election algorithm 15 Hours Optimistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: 15 Hours X500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed 10 Hours	scala	r and vector clock – lamport logi	cal clock for p	artial and total ordering -						
15Hours UNIT-II Distributed deadlock – Resource allocation model - requirements and performance metrics - classification of distributed deadlock detection algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and performance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm: token based –Raymond tree algorithm– quorum based : mekawa' svoting algorithm message based – Ricart 15 Hours Agrawala algorithm – Election – ring based election – bully election algorithm – Multicast communication. 15 Hours UNIT-III Optimistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: K.500 protocol – Distributed file System –File service Architecture- NFS - GFS –Distributed locking mechanism- Distributed	consi	stent cut – inconsistent cut – g	global states -	lamport global snapshot						
UNIT-II Distributed deadlock – Resource allocation model - requirements and performance metrics - classification of distributed deadlock detection algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and performance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm – Reperformance metrics of distributed mutual exclusion algorithm – quorum based : mekawa' svoting algorithm message based – Ricart 15 Hours Agrawala algorithm – Election – ring based election – bully election algorithm – Multicast communication. 15 Hours Distributed musclus on phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: (5.00 protocol – Distributed file System –File service Architecture- NFS - GFS –Distributed locking mechanism- Distributed	algor	ithm.			15Hours					
Distributed deadlock – Resource allocation model - requirements and performance metrics - classification of distributed deadlock detection algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and performance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm: token based –Raymond tree algorithm– quorum based : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm - Multicast communication.			UNIT-II		•					
performance metrics - classification of distributed deadlock detection algorithm - Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion - requirements and performance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm: token based -Raymond tree algorithm- quorum based : mekawa' svoting algorithm message based - Ricart Agrawala algorithm - Election - ring based election - bully election algorithm - Multicast communication. UNIT-III Optimistic and pessimistic transactions -Two - phase commit protocol - three phase commit protocol - Transaction recovery - Replication - fault tolerant services- the gossip architecture- Name services: DNS - Directory Services: K.500 protocol - Distributed file System -File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	Distri	buted deadlock – Resource allo	ocation model	- requirements and						
Algorithm – Lamport - Haas- Misra Edge chasing distributed deadlock detection algorithm. Distributed Mutual exclusion – requirements and performance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm: token based –Raymond tree algorithm– quorum based : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm - Multicast communication.	perfo	ormance metrics - classification	of distributed	l deadlock detection						
detection algorithm. Distributed Mutual exclusion – requirements and performance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm: token based –Raymond tree algorithm– quorum based : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm – Multicast communication. UNIT-III Optimistic and pessimistic transactions -Two – phase commit protocol – three ohase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: K.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	algor	ithm – Lamport - Haas- Misra	Edge chasing	distributed deadlock						
performance metrics of distributed mutual exclusion algorithm- Distributed mutual exclusion algorithm: token based –Raymond tree algorithm– quorum based : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm - Multicast communication. UNIT-III Optimistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: K.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	deteo	ction algorithm. Distributed Mut	ual exclusion	 requirements and 						
mutual exclusion algorithm: token based –Raymond tree algorithm– quorum based : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm - Multicast communication. UNIT-III Optimistic and pessimistic transactions -Two – phase commit protocol – three chase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: X.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	perfo	ormance metrics of distributed mut	tual exclusion	algorithm- Distributed						
based : mekawa' svoting algorithm message based – Ricart Agrawala algorithm – Election – ring based election – bully election algorithm – Multicast communication. UNIT-III Optimistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: K.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	mutu	al exclusion algorithm: token base	d –Raymond tr	ee algorithm– quorum						
Agrawala algorithm – Election – ring based election – bully election algorithm – Multicast communication. UNIT-III Optimistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: K.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	based	d : mekawa' svoting algorithm mes	sage based – R	icart						
- Multicast communication. UNIT-III Optimistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: K.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	Agrav	wala algorithm – Election – ring bas	ed election – b	ully election algorithm						
UNIT-III Optimistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: X.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	– Multicast communication.									
Optimistic and pessimistic transactions -Two – phase commit protocol – three phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: X.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	-		UNIT-III							
phase commit protocol – Transaction recovery - Replication – fault tolerant services- the gossip architecture- Name services: DNS – Directory Services: X.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	Ontir	nistic and pessimistic transactions -	Two – phase co	ommit protocol – three						
services- the gossip architecture- Name services: DNS – Directory Services: X.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	phase	e commit protocol – Transaction r	ecovery - Renl	ication – fault tolerant						
X.500 protocol – Distributed file System –File service Architecture- NFS - GFS -Distributed locking mechanism- Distributed	servi	res- the gossin architecture- Nam	e services: DN	S – Directory Services:						
-Distributed locking mechanism- Distributed) protocol – Distributed file System	-File service Δ	rchitecture- NFS - GFS						
	-Dist	ributed locking mechanism- Distrik	outed							
shared memory – Sequential and Release consistency	share	ad memory – Sequential and Release	se consistency		10 Hours					

Course Outcomes: At the end of the course student will be able to Identify the core concepts of distributed systems: the way in which several machines 1. orchestrate to correctly solve problems in an efficient, reliable and scalable way. Examine how existing systems have applied the concepts of distributed systems in 2. designing large systems. 3. Apply these concepts to develop sample systems. **Program Outcomes**→ 3 4 5 1 2 6 7 8 **PSO Course Outcomes** 1 2 3 2 1 1 2 2 1 3 2 2 1 1 1 2 2 2 3 3 2 2 1 **TEXTBOOKS:** 1. Randy Chow and Theodore Johnson, "Distributed Operating Systems and Algorithms", Addison - Wesley, - Fourth Impression - 2012. **REFERENCE BOOKS:** G. Coulouris, J. Dollimore, and T. Kindberg, "Distributed Systems : Concepts and 1. Designs", 5th edition, Addison Wesley, 2011. Mukesh singhal and N.G. Shivaratri, "Advanced Concept sin Operating Systems, 2. Distributed, Database, and Multiprocessor Operating Systems ", 1st edition, McGraw Hill, 1994. 3. Vijay K. Garg, "Elements of Distributed Computing", 1st edition, Wiley & Sons, 2002.

ADVANCED SOFTWARE TESTING										
Cou	rse Code:	22CSE221	Course Type	PEC						
Теас	hing Hours/Week (L: T: P: S)	3 Hours	Credits	03						
Tota	l Teaching Hours	40	CIE + SEE Marks	50+50						
Cours	e Objectives:									
-										
1.	To Explain the overview of the tes	sting technique	e and create test plans , test	Cases and						
	test Scenarios									
2.	To Generate test Scripts, test requ	uirements spec	ification and test plan for given in the second sec	ven project						
2	To Illustrate the use of functional	tosting popfu	nctional testing and develop	tost						
5.	cases in object-oriented testing	testing, normu	netional testing and develop							
4	To Make use of various modern e	naineerina tes	ting tools and techniques fo	r						
	automation testing									
5.	To Evaluate the software quality u	using empirical	software testing process							
		UNIT-I								
Overv	iew of Testing Techniques-Creat	ting Test Plar	ns and Test Cases – Test							
Scena	Scenarios – Test Data									
– Test	– Test Scripts, Test Requirements Specification and gathering – Creating TRS									
and ⁻	Test Procedure Pre-Planning Act	ivities: Succes	s Criteria/Acceptance							
Criter	ia, Test Objectives, Assumptions, Er	ntrance Criteria	a/Exit Criteria							
Test P	lanning: Test Plan, Requirements/T	Traceability, Est	timating, Scheduling,							
Staffir	ng, Approach, Test Check Procedur	es		15 Hours						
Post-I	Planning Activities: Change	Managemen	t Versioning (change							
contro	ol/change management / configura	ation management	nent)							
Softw	are Test Management - Risk and Te	esting - Test O	rganization - Test							
progr	ess monitoring and control									
<u>p </u>		UNIT-II								
Funct	ional Testing: Automated Unit Te	esting – Test	Plan & Scripts – Creating							
Autor	nated Test Procedures and Rep	orts – Integr	ation Testing – Order of							
Integr	Integration – Creating & Maintaining Tested Databases- Test Metrics Non-									
Functional Testing : Performance Testing – Load Testing – Endurance Testing										
– Scal	ability Testing –Internationalization	n Testing– Perf	ormance Analysis and							
Repoi	ting , Developing Test Cases in Ob	ject-oriented	Testing - Object-oriented							
Testin	g Methods: Fault-based Testing, S	cenario based	Testing – Challenges.							
Creati	ng an environment supportive of s	oftware testin	g – Building Software							
Testin	g Process – Selecting and Installing	g Software Tes	ting Tools – Building	15 Hours						
Softw	are Tester Competency.									
		UNIT-III								

(Deemed to be University)											
Auton	nated Testing Tools – Functiona	al T	estin	ng -	Rat	iona	l Fur	nctio	nal T	ester -	-
Seleni	um – Cucumber - JUnit, Perform	ance	e Tes	sting	Тос	ols -	Ratio	onal	Perfo	rmance	2
Tester	[.] – HP Load runner, Test Manage	mer	nt To	ools	- Qı	uality	/ Cen	nter,	Perfo	rmance	e l
Cente	r Reports and Control Issues – Typ)es c	of Re	view	- C	omp	oner	nt of	Review	w Plans	5
– Rep	oorting Review Results – Evalu	atio	n o	f So	ftwa	re (Quali	ty,	Test I	Process	5
Optim	nization, Empirical Software Testing	g an	d An	alys	is, M	obile	e Tes	ting	SOA	Testing	1
, Data	Warehouse Testing, Cloud	-						-			10.11
Testin	g, BigData Testing, WebApps Tes	ting	, IoT	Test	ting.						10 Hours
Course Outcomes: At the end of the course student will be able to											
_	· · · · · · · · · · · · · · · · · · ·										
1.	Explain the overview of testing technique and create test plans , test Cases and									and	
	test Scenarios										
2.	Generate test Scripts, test requirements specification and test plan for given										
	project										
3.	Illustrate the use of functional testing , non functional testing and develop test										
	cases in object-oriented testing										
4.	Make use of various modern engineering testing tools and techniques for										
	automation testing										
5.	5. Evaluate the software quality using empirical software testing process										
	Program Outcomes→	1	2	3	4	5	6	7	8	PSO	¢↓
	↓ Course Outcomes									1	2
	1	3		3		2				2	
	2	3		3		2				2	
	3	3		3		3				2	
	4	2		3		2				2	
	5	2		3		2				2	
TEXTE	BOOKS:										
1.	Srinivasan Desikan, Gopalaswan	וץ R	ame	sh "S	Softv	vare	Testi	ing -	- Princ	iples a	nd
	practices ",Pearson Education, 2	006						-			
2.	Nick Jenkins "A Software Testin	ig Pr	rime	r – A	An Ir	ntrod	luctio	on to	o Soft	ware To	esting" 2008.
	Scott W. Ambler "The Object Pi	rime	er: Ag	gile I	Mod	el-D	riven	Dev	velopr	nent w	ith UML 2.0"
	Third Edition, Cambridge Univer	sity	Pres	s, M	arch	201	.0.				
REFER	RENCE BOOKS:										
1.	1. "Software Testing – An ISTOB-BCS Certified Tester Foundation Guide", Third										
	Edition,BCS,2015										
E Boo	ks / MOOCs/ NPTEL										
1.	1. https://www.coursera.org/specializations/software-testing-automation										
2.	2. https://onlinecourses.nptel.ac.in/noc19_cs71/preview										
	https://pptel.ac.in/courses/1061	051	50	C37 I	/ ргс	view					
э.	1 mups.//mpiei.ac.iii/courses/1001	ODT	JU								

GENERAL PURPOSE COMPUTATION ON GPU

Cou	rse	Code:	22	2CSE	222		Cοι	ırse	Туре	•		Р	EC
Teac	chir	ng Hours/Week (L: T: P: S)	3	+0+	0+0		Cre	dits				0	3
Tota	al To	eaching Hours	4	0			CIE	+ S	EE M	arks		5	0+50
Cours	se C	Dbjectives:											I
1.	Kr	now the architecture of GPUs.											
2.	Ur	nderstand the execution and m	em	ory r	node	el of	CUE	DA a	nd O	penCl	_ .		
3.	Ur	nderstand the Programming M	ode	el of	CUD	A an	d O	pen(CL.				
4.	Тс	write GPU programs on CUDA	۹ an	id Op	cenC	ĽL fra	mev	work	S.				
				UN	IT-I								
Heterogeneous Architecture and Parallel Computing: Introduction to parallel													
programming, Introduction to heterogeneous architecture-GPU in particular.													
Introduction to GPU computing, Why GPU, evolution of GPU pipeline and general													
purpo	ose	computation on GPU, GPU are	chite	ectui	re ca	se s	tudie	es:N	VIDIA	A G80	_ ,GT200),	
Fermi	i, AN	MD Radeon, AMDFusion APU e	etc.										
Execu	itior	n Model: Features CUDA and	Ope	enCL	, Co	mpa	riso	n Cl	JDA :	and C	penCl	,	
Threa	id o	rganization, Kernel, error hand	lina	. and	d exe	cuti	on ir	n CU	DA a	nd Or	penCL.	,	
		· j		,								1	.6 Hours
UNIT-II													
Programming Model: CUDA Introduction, basics of CUDA C, Complete CUDA									4				
struct	ure	, basic details of API and lil	brar	ies,	Ope	nCL	ove	ervie	w, O	penC	L basi	C	
speci	ficat	tion, OpenCL C language, Vect	oriza	atior	۱.								
Mem	ory	Model: Introduction to memo	ory	mod	el a	nd G	δPU	inte	ractio	on wit	h CPU	,	
Mem	ory	model of CUDA and OpenCL,	Me	emoi	ъ Ні	erar	chy	(loca	al/reg	jister,	shared	ł	
globa	il) a	nd optimizations, memory opti	imiz	ed p	rogr	amn	ning	, coc	ding	tips.]	.4 Hours
				UNI	T-III								
Tools	Ar	nd Programming: Introduction	to	inst	allat	ion	and	con	npilat	tion p	process	,	
usage	e o	f tools, profiler and debugg	er.	CUD	A b	y E>	amp	oles	and	Ope	nCL b		0.11
Exam	ples	s, Future Directions.										1	.0 Hours
Cours	se C	Dutcomes: At the end of the co	ours	e sti	ıden	t wil	l be	able	to				
1.	Ex	plain the architecture of GPUs											
2. Describe the execution model of CUDA and OpenCL													
3.	Illu	ustrate the programming mode	el of	t CU	DA a	nd C	Dper	nCL					
4.	Ex	plain the memory model of CL	JDA	and	Оре	enCL							
5.	Tc	o develop GPU programs on CL	JDA	and	l Ope	enCL	. frar	new	orks				
				1							1		1
		Program Outcomes→	1	2	3	4	5	6	7	8	PSC)↓	-
		↓ Course Outcomes									1	2	-
		1	3	2	2	3	3	2		2	3	2	

	2	3	2	2	3	3	2		2	3	2	
	3	3	2	2	3	3	2		2	3	2	
	4	3	2	2	3	3	2		2	3	2	-
	5	3	2	2	3	3	2		2	3	2	
TEXTE	BOOKS:											
1.	David Kirk and Wen-Mei W.Hwi	u, Pr	ogra	mm	ing l	Mass	sivel	y Par	allel P	rocess	sors:	А
	Hands-on Approach, 2010.											
2.	Jason Sanders and Edward Kano	drot,	CUI	DA b	y Ex	amp	le: A	n Int	roduc	tion to	o Ge	neral-
	Purpose GPU Programming, 2010.											
3	Niranjan N. Chiplunkar and Raju K., Introduction to Parallel Computing. Wiley											
	India,2020.											
REFER	RENCE BOOKS:											
1.	T.Mattson, et al. Patterns Of Parallel Programming, Addison Wesley, 2005											
2.	NVIDIACUDAProgrammingGuideV3.0,NVIDIA											
3.	Benedict R Gaster Timothy G Mattson and James Fund OpenCL Programming											
	GuidebyAaftabMunshi 2011											
4.	Benedict Gaster David	R	Kae	li.	lee	ŀ	low	<u>م</u>	and	Perh	aad	Mistry
	Heterogeneous Computing with	n Op	enC	L, 20)11.							
5.	GPUGems3,H. Nguyen(ed.),Add	ison	We	sley,	200	7.						
6.	GPUGems 2,M. Pharr(ed.),Addis	on V	Vesle	ey, 2	005.							
7.	NVIDIA and OpenC	L:htt	://\	NWW	.nvio	dia.c	om/	conte	ent/cu	dazor	ne/do	ownload/
	OpenCL/NVIDIA_Open CL_Prog	ram	mino	g Gu	ide.p	odf						
8.	http://www.nvidia.com/content,	/cud	azor	ne/C	UDA	Bro	wser	/do				
9.	Open CL at											
	Khronos:http://www.khronos.or	a/de	evelo	ppers	s/libi	rarv/	'ovei	rview	/ ope	ncl ov	ervie	ew.pdf
	http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf											
10	• http://developer.amd.com/zones/OpenCLZone/courses/pages/Introduction-OpenCL											
	Programming2010.		Perio					page	.,	Judet	5.1 C	POINCE
11	http://developer.amd.com/opu	/am	lapr	sdk/	/doc	ume	ntat	ion/r	bades	/Tutor	ialor	penCl
	.aspx	Grin	~~~~	5017		2						

ANALYSIS OF COMPUTER NETWORKS

			I	· · ·					
Cou	rse Code:	22CSE223	Course Type	PEC					
Tead	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03					
Tota	al Teaching Hours	40	CIE + SEE Marks	50+50					
Cours	se Objectives:								
-									
1.	To understand and analyze the	efficient usage	available resources in transpo	orting the					
	voice packets.								
2.	To understand the efficient shar	ing of the chan	nel among the competing flo	wc					
	streams.								
3.	To analyze the stream session in	n specific to det	erministic network analysis.						
4. To analyze the stream session in specific to stochastic analysis.									
5.	5. To understand the dynamic bandwidth sharing in elastic traffic.								
		UNIT-I							
Intro	duction: Two examples of analys	sis: Efficient tra	nsport of packet voice calls,						
Achie	vable throughput in an input-q	jueuing packet	switch; The importance of						
quan	titative modeling in the Engineering	ng of Telecomn	nunication Networks.						
Mult	iplexing: Network performance	and source	characterization; Stream						
sessio	ons in a packet network: Delay	guarantees; E	lastic transfers in a packet						
netwo	network; Packet multiplexing over Wireless networks.								
	UNIT-II								
Strea	m Sessions: Deterministic Net	twork Analysi	s: Events and processes in						
packe	et multiplexer models: Universal	concepts; Dete	rministic traffic models and						
Netw	ork Calculus; Scheduling; Applicat	tion to a packe	t voice example; Connection						
setup	The RSVP approach.								
Strea	m Sessions: Stochastic Analys	is: Determinist	cic analysis can yield loose						
boun	ds; Stochastic traffic models; Ac	ditional notati	on; Performance measures;						
Little	s theorem, Brumelle's theorem,	and application	ns; Multiplexer analysis with						
statio	nary and ergodic traffic; The eff	fective bandwid	th approach for admission						
contr	ol; Application to the packet voice	e example; Stoc	nastic analysis with shaped	15 Hours					
traine	, Multinop networks, Long-Range								
Adan	tive Bandwidth Sharing for Ela	stic Traffic: Fl	astic transfers in a Network:	1					
Notw	vork parameters and performance	objectives: Sha	ring a single link: Rate-Rased						
Contr	Control: Window-Based Control: General Principles: TCP: The								
Interr	pet's Adaptive Window Protocol: F	Randwidth shari	ing in a Network	10 Hours					
Interi									
Cours	se Outcomes: At the end of the c	ourse student v	will be able to						
1.	Explain and analyze the efficient	t usage availabl	e resources in transporting the	ne voice					
	packets.								
2.	Illustrate the efficient sharing of	the channel an	nong the competing flow str	eams.					
3.	3. Analyze the stream session in specific to deterministic network analysis.								

- **4.** Analyze the stream session in specific to stochastic analysis.
- **5.** Explain the dynamic bandwidth sharing in elastic traffic.

							1					1
	Program Outcomes→	1	2	3	4	5	6	7	8	PSC	C↓	l
	↓ Course Outcomes									1	2	1
	1	3		2	2				3		3	1
	2	3	2						2		3	1
	3	3	2						2	2		l
	4	3		2					1	2		l
	5	3	2						1	1		1
TEXT	BOOKS:											
1.	Anurag Kumar, D. Manjunath, Jo	ру К	uri: C	Comi	nun	icati	on N	letwo	orking	and A	Analy	tical
	Approach, Elsevier, 2004.											
REFEF	RENCE BOOKS:											
1.	1. M. Schwartz: Broadband Integrated Networks, Prentice Hall PTR, 1996.											
2.	J. Walrand, P. Varaiya: High Performance Communication Networks, 2nd Edition,											
	Morgan Kaufmann, 1999.											

IMAGE PROCESSING AND ANALYSIS

			1						
Cou	rse Code:	22CSE224	Course Type	PEC					
Tea	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03					
Tota	al Teaching Hours	40	CIE + SEE Marks	50+50					
Cour	se Objectives:								
1.	Explain the concept and steps i	ncluded in D	igital Image Processing. Desci	ribe Image					
	Sampling and Image Quantization	on techniques	and Apply the knowledge of	4-8 and M					
	pixel adjacency to illustrate some	e basic relatio	nships between pixels						
2. Explain Frequency domain, illustrate Smoothing Frequency-Domain Filters and									
	Sharpening frequency-Domain F	ilters.							
3.	Comprehend different methods,	models for vi	deo processing and motion es	stimation					
4.	Apply the process of image enhai	ncement for c	ptimal use of resources.						
		UNIT-I		1					
Imag	e Basics Basic steps of Image pro	cessing system	m – Pixel relationship- Image						
Trans	formsImage Enhancement- Spa	tial filtering, I	Frequency Domain filtering –						
Imag	e Segmentation – Image Compres	sion. Binary o	bject feature - Area, Centroid,						
Axis	of Least Second Moment, Pro	jections, Eule	er Number, Thinness Ratio,						
Eccer	Eccentricity, Aspect Ratio, Moments, Boundary Descriptors - Chain Code, Freeman								
Code, and Shape Number, Signatures, Fourier Descriptors. Histogram-based									
(Stati	(Statistical) Features, Intensity features- Hough								
trans	forms.								
<u> </u>	· · · · · · · · · · · · · · · · · · ·								
Conc	epts and classification: statistic	cal, structura	and spectral analysis, Co-						
occur	rence matrices - Edge frequency	- Multiscale	texture description - wavelet						
doma	an approaches, Texture categoriza	ition and Text	ure segmentation.						
Color	ur Image Processing - Grav La	avel to Color	Transformations Histogram						
Proce	essing Color								
Imag	e Smoothing and Sharpening C	olor Noise R	eduction Color-Based Image						
Seam	entation Color Edge Detection Pa	atterns and na	attern class Bayes' Parametric						
classi	fication Feature Selection and Bo	ostina	ittern class, buyes i arametric						
Temr	late-Matching – based object rec	ognition Sce	he and Object Discrimination						
Obied	Object Modelling, Model based object recognition								
Objev	et modelling, model based object			15 Hours					

VIDEO DDOCECCINIC.

UNIT-III

VIDEO PROCESSING:
Basic Concepts and Terminology, Monochrome Analog Video, Analog Video
Raster, Blanking Intervals, Synchronization Signals, Spectral Content of Composite
Monochrome Analog Video, Color in Video Analog Video Standards, NTSC, PAL,
SECAM, HDTV, Digital Video Basics: Advantages of Digital Video, Parameters of a
Digital Video Sequence, The Audio Component.

Analog-to-Digital Conversion :Color Representation and ChromaSubsampling: Digital Video Formats and Standards, The Rec. 601 Digital VideoFormat, The Common Intermediate Format, The Source Intermediate Format,Video Compression Techniques and Standards, Video Compression Standards,Codecs, and Containers, Video Processing in MATLAB, Reading Video Files,Processing Video Files, Playing Video Files, Writing Video Files, Problems10 Hours

Course Outcomes: At the end of the course student will be able to

- Explain the concept and steps included in Digital Image Processing. Describe Image Sampling and Image Quantization techniques and Apply the knowledge of 4-8 and M pixel adjacency to illustrate some basic relationships between pixels
- **2.** Explain Frequency domain, illustrate Smoothing Frequency-Domain Filters and Sharpening frequency-Domain Filters.
- Comprehend different methods, models for video processing and motion estimation
 Apply the process of image enhancement for optimal use of resources.

Program Outcomes $ ightarrow$	1	2	3	4	5	6	7	8	PSO↓	
↓ Course Outcomes									1	2
1	3		2	2					3	2
2	3		2						3	2
3	2	2	2						2	3
4	2	3			3			2	2	3

TEXTBOOKS:

- **1.** Oge Marques, "Practical Image and Video Processing Using MATLAB", Wiley-IEEE, Press,2011
- **2.** Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Third Ed., Prentice- Hall, 2008.

REFERENCE BOOKS:

1.	Yu Jin Zhang, "Image Engineering: Processing, Analysis and Understanding", Tsinghua
	University Press, 2009
2.	Mark Nixon and Alberto S. Aquado, "Feature Extraction & Image Processing for

- Computer Vision", Third Edition, Academic Press, 2012
- **3.** Bogusław Cyganek, "Object Detection and Recognition in Digital Images: Theory and Practice", Wiley, 2013

Lambert Academic Publishing, 2012

BLOCKCHAIN TECHNOLOGY

Cou	rse Code:	22CSE231	Course Type	PEC					
Teac	:hing Hours/Week (L: T: P: S)	3+0+0+0	Credits	03					
Tota	I Teaching Hours	40	CIE + SEE Marks	50+50					
Cours	e Objectives:								
1. Understand conceptual working of block chain technology									
2. Devise the block chain technology to innovate and improve business proces									
3.	Get the idea of working with Eth	ereum and Sm	art Contracts in Block Chain						
	Environment.								
4.	Solving real-world problems using	ng Remix IDE a	nd Truffle						
5.	Describe and illustrate the idea	of Hyperledger	Fabric.						
		UNIT-I		<u> </u>					
Introc	Juction: What Is the Blockchain?	What is Bitcoin	? The Connected World and						
Block	chain: The Fifth Disruptive Compu	uting Paradigm	. How does blockchain work						
? Ho	w does blockchain accumulate	blocks? Tiers	of blockchain technology,						
Featu	res of a blockchain, Types of bloc	kchain.							
Blockchain Currency: Technology Stack: Blockchain, Protocol, Currency, The									
Double-Spend and Byzantine Generals' Computing Problems, How a									
Cryptocurrency Works.									
Benefits and limitations of blockchain : Technical Challenges, Business Model									
Challenges, Scandals and Public Perception, Government Regulation, Privacy									
Challe	enges for Personal Records, Overa	all: Decentraliza	tion Trends Likely to Persist.						
Conse	ensus: Consensus mechanism, Typ	pes of consensu	s mechanisms, Consensus in						
block	chain, CAP theorem and blockcha	iin		15 Hours					
		UNIT-II							
Decer	ntralization: Decentralization usin	g blockchain, N	Methods of decentralization,						
How	to decentralize, Computing power	r and decentral	ization, DO, DAO, DAC ,DAS,						
Dapp	S,								
Ether	eum and Smart Contracts: Defini	ition, Ricardian	contracts, Deploying smart						
contra	acts on a blockchain, Ethereum B	lockchain, Ether	reum Network, Components						
of the	e Ethereum, ecosystem, Ether cr	yptocurrency,	Introducing Solidity, Global						
Varial	oles and Functions, Expressions	and Control	Structures, Writing Smart						
Contr	acts, Truffle Basics and Unit Testir	ng, Debugging	Contracts						
Remix	< IDE: Programs execution.								
				15 Hours					
		UNIT-III							
Hype	rledger: Fabric The reference arch	nitecture Requi	rements and design goals of						
Hvne	rledger Fabric. Membershin servic	tes. Blockchain	services. Components of the	10 Hours					
fabric	Chain code implementation.	The applicat	ion model. Consensus in	20110013					
Hyperledger Fabric, The transaction life cycle in Hyperledger Fabric.									

Cours	Course Outcomes: At the end of the course student will be able to											
1.	Explain the block chain technolo	ogy										
2.	Illustrate the significance of Cor	sens	sus a	nd v	vorki	ing c	of cr	yptoo	curren	су.		
3.	Develop block chain-based solu	tion	s and	d wri	te sr	nart	con	tract	using	Remi	x IDE	and
	Ethereum frameworks.											
4.	Build and deploy block chain ap	plica	ation	usir	ng Tr	uffle	e Sui	te.				
5.	Create and deploy a block chair	n net	work	c usii	ng H	ype	rledg	ger Fa	abric S	SD		
	Program Outcomes→	1	2	3	4	5	6	7	8	PS	O↓	
	↓ Course Outcomes									1	2	
	1	2								1	2	
	2	2		3						1	2	
	3	2			2	2				3	2	
	4	2		3		3				2	3	
	5	2	2	3		3			2	2	3	
TEXT	BOOKS:											
1.	Melanic Swan, "Block Chain: Blu	lepri	int fo	or a l	lew	Ecoi	nom	y″, O	'Reilly	, 2015		
2.	Imran Bashir, "Mastering	Bl	lock(Chair	ו:	Dis	tribu	uted	Led	ger	Tec	hnology,
	Decentralization and Smart Cor	ntrac	ts Ex	plai	ned"	, Pac	ckt P	ublis	hing.			
3.	Ritesh Modi, "Solidity Program	ming) Ess	entia	ls: A	Beg	ginne	er's G	iuide t	o Buil	d Sm	nart
	Contracts for Ethereum and Blc	ockCl	hain'	', Pao	ckt P	ubli	shin	g				
REFE						• "	141		<u> </u>			
1.	Anshul Kaushik, "BlockChain an	d Cr	ypto	Cur	renc	ies",	Kha	nna	Publis	hing F	louse	e, Delhi.
2	Colman Baset Lue Deeresiere Nitin Cour Detr Nevetory Anthony O'Devel Market											
۷.	Pamakrishna "Hands-On Blo		Gaui Chai	, гец р. м	ith	ион Цур	iy, A orla	daar		Juwa, dina	Doce	ntralized
	Applications with Hyperledger	CK Fahr	ic an	d Co	mn	י יאטרי ראסר'	″ Im	nort	2018	ung	Dece	fittalizeu
2	Josh Thompsons "Block Chain:			vCh	ain f	or R	, 111 onin	norc-	Guide		ock c	hain
J.	Technology and Leveraging Blo		hain	Proc	iram	min	a″	1013-	Juide			Inann
4	Daniel Drescher "BlockChain B		″ Δr	ress	· 1ct	edit	y . .ion	2017	7			
		22102	' ' ' Þ		, ב כו	cuit	,	201/	•			

SPEECH PROCESSING

Court	vee Code:	2	2001			<u> </u>		T.				
Cour		2.	2030	-252 0.0		Col	arse	туре	2		P	
Teac	ning Hours/ week (L: 1: P: S)	5	+0+	0+0		Cre	aits				- 0	3
lota	I leaching Hours	4	0			CIE	+ 5		arks		5	0+50
Cours	e Objectives:											
		-										T
1.	1. Understand the fundamentals of speech processing.											
2.	2. Study the models of speech processing.											
3.	3. Explain the linear predictive coding.											
4.	Illustrate the application of spee	ch p	roce	essin	g.							
			UN	IT-I								
Introd	luction, Fundamentals of Digital S	pee	ch P	roce	ssing	g, Di	gital	moc	lels fo	or the		
speec	h signals, Time domain m	ode	ls f	or	spee	ech	pro	cess	ing,	Digita	al	
repres	sentation of the speech waveform	, sho	ort te	erm	Four	ier a	inaly	sis.				L5Hours
			UNI	T-II								
Homo	morphic speech processing, Linea	ar pr	edic	tive o	codi	ng o	f spe	ech:	Introc	ductio	n,	
Basic	principles of LP analyse, Computa	itior	n of g	gain	for t	he r	node	el, so	lution	of LP	С	
equat	ion, Comparison between the me	thoo	ds of	solu	ition	of t	he					
LPC ar	nalysis equation, the prediction er	ror	signa	al.								L5 Hours
			UNI	T-III								
Linear	Linear predictive coding of speech: Frequency domain interpretation of LP analysis,											
Relatio	Relation of LP analysis, Relations between various speech parameters, applications											
Digita	I speech for man machine commu	unic	atior	י א by	voic	e.						10 Hours
				-								
Cours	A Outcomes: At the end of the co	nurc	Δ cti	Idon	t wil	l ho	ahlo	to				
cours	e outcomes. At the end of the co	Juis		Juch		i be	abic	10				
	Explain the fundamentals of spe	ach	nroc	accir	na							
2	Understand the various models	of sr	heed	h nr	<u>יש.</u> הרפגי	sina						
2.	Infer the linear predictive coding	1 24		ii pit		sing	•					
<u>у</u> . Д	Illustrate the application of spee	rh n	roce	accin	n							
		ch p	noce	5511	y.							
		1	2	2	Λ	5	6	7	8	DC		7
		-	2	5	т	J	0	1	0	1	•↓ 2	-
		1		2	2					1	2	-
	2	1		2	2					1		-
	2	1		2	2					1		-
	3	1		2	2							-
тгути		Т		Z	Ζ					1		
16711	Digital Dragossing of Cross-th Ci-	unal				Del	aine	. D -	المام		ofe	Dearran
1.	igital Processing of Speech Sig	inals	s, La\	wren	се к	. Kal	une	, ко	naid	vv. Scr	iarei	, Pearson
REFER	RENCE BOOKS:											
1.	Speech and Audio Signal Proces	ssind	g, A.F	r. Ja	YAN	, PH	I					
2.	2. Speech and Audio Processing, Apte Shaila D, Wiley India Pvt. Ltd											

SOFTWARE ENGINEERING AND MOD

	irse Code:	22CSE233	Course Type	PEC			
Теа	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03			
Tota	al Teaching Hours	40	CIE + SEE Marks	50+50			
Cour	se Objectives:						
1.	To explain the overview of fund	amentals of soft	tware process models and pr	inciples of			
	engineering concepts related to	requirements a	and architectures				
2.	To describe the process of mod reuse	eling, distribute	d architecture, software valic	lation and			
3.	To establish the foundation on o	object oriented	design principles and patter	ns			
4.	To recognize the importance of	software testing	g and describe the intricacies	5			
	involved in software maintenand	ce.					
5.	To analyze the process of softwa	are reuse and ex	xplain the importance of dist	ributed			
	software engineering.						
		UNIT-I		1			
Soft	ware Process Models and Princi	ples					
Softv	vare Process Models: Waterfall, '	V-model, Spiral	iterative and Incremental-				
Component- based development, Fourth Gen Techniques, Introduction to Agile							
Softv	vare Development, Agile Principle	s and Practices,	Extreme Programming	15 Hour			
Mod	elling Requirements						
Software Requirements Engineering, Software Architecture: Architectural Tactics							
Softv	and Patterns- Architecture in the Life Cycle: Architecture and Requirements						
Softw and F	Patterns- Architecture in the Life C	Software Architectu	ecture: Architectural Tactics re and Requirements.				
Softw and F	Patterns- Architecture in the Life C	Software Archite Sycle: Architectu UNIT-II	ecture: Architectural Tactics re and Requirements.				
Softw and F Mod	Patterns- Architecture in the Life C elling Design	Software Archite Cycle: Architectu UNIT-II	ecture: Architectural Tactics re and Requirements.				
Softw and F Mod Desig	Patterns- Architecture in the Life C elling Design gning Architecture. Object Oriente metrics, Overview of Design Patte	d Design, Desig	ecture: Architectural Tactics re and Requirements. n principles DFD, UML tools,				
Softw and F Mod Desig OOD Softw	Patterns- Architecture in the Life C elling Design gning Architecture. Object Oriente metrics, Overview of Design Patte ware Validation	d Design, Desig	ecture: Architectural Tactics re and Requirements. n principles DFD, UML tools,				
Softw and F Mod Desig OOD Softw Introd	Patterns- Architecture in the Life C elling Design gning Architecture. Object Oriente metrics, Overview of Design Patte ware Validation duction to Software Verification V	d Design, Desig validation, levels	ecture: Architectural Tactics re and Requirements. n principles DFD, UML tools, s of testing, types of testing,				
Mod Desig OOD Softv Black	Patterns- Architecture in the Life C elling Design gning Architecture. Object Oriente metrics, Overview of Design Patte ware Validation duction to Software Verification V to box design techniques, White b	d Design, Desigerns Validation, levels	ecture: Architectural Tactics re and Requirements. n principles DFD, UML tools, s of testing, types of testing, niques, statement coverage,				
Softw and F Mod Desig OOD Softv Intro- Black decis	Patterns- Architecture in the Life C elling Design gning Architecture. Object Oriente metrics, Overview of Design Patte ware Validation duction to Software Verification V c box design techniques, White b ion coverage, condition coverag	d Design, Desig validation, levels ox design techr	ecture: Architectural Tactics re and Requirements. n principles DFD, UML tools, s of testing, types of testing, niques, statement coverage, w process. Functional non-				

UNIT-III										
Software Reuse										
Reuse based Software Engineering Approaches, supporting software reuse application frameworks Commercial-Of-The-Shelf(COTS) systems: COTS Solution Systems, COTS Integrated Systems. Component-Based Software Engineering (CBSE) Components, Component Models, CBSE Processes: CBSE for Reuse, CBSE with Reuse, Component-based Development:									10 Hours	
Distributed Software Engineering										
Distributed Software Engineering, Distributed system characteristics, Design Issues, Middleware Client-Server Computing, Client-Server Interaction, Architectural Patterns for Distributed Systems: Master/Slave, Two-tier, Multi-tier, Distributed component, and Peer-to-Peer Software as a Service (SaaS) Key elements Implementation factors, Configuration of a system offered as a service.										
Course Outcomes: At the end of the co	nurc	o cti	Idan	+ wil	l ha	ahla	to			
Course Outcomes. At the end of the co	Juis		luen	U VVII	i be	able	10			
 Explain the overview of fundamentals of software process models and principles of engineering concepts related to requirements and architectures Describe the process of modeling, distributed architecture, software validation and reuse Establish the foundation on object oriented design principles and patterns Recognize the importance of software testing and describe the intricacies involved in software maintenance. Discuss the process of software reuse and explain the importance of distributed software engineering 										
	1	2	2	4	-	C	-	•	DCO	
$\frac{\text{Program Outcomes}}{\text{Outcomes}}$	Т	2	3	4	5	6	/	8		2
	2	3	2		2			2		2
2	2	3	2		2			2		2
3	2	3	2		2			2		2
4	2	3	2		2			2		2
5	2	3	2		2			2		2
TEXTBOOKS:										
 Roger Pressman, Software Engir McGrawHill,2010. 	ieeri	ng: /	A Pra	actiti	ione	r's A	ppro	ach, 7	th Editio	on,
REFERENCE BOOKS:										

1.	Ian Sommerville, Software Engineering, 9th Edition, , Addision-Wesley, 2010.
2.	Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, 3rd Edition, ,
	Addison- Wesley Professional, 2012 (SEI Series in Software Engineering).
3.	Robert E. Filman, Tzilla Elrad, Siobhn Clarke, Mehmet Aksit ,Aspect-Oriented Software
	Development, Addison-Wesley Professional, 2004.

N	(Deemed to be Univ	Syllabus of M. Tech (Computer Science & Engineering)
	4.	Martin Fowler, Refactoring: Improving the design of existing code, Addison Wesley,
		1999. 5.Robert C. Martin , Agile Software Development, Principles, Patterns, and
		Practices, Pearson, 2011.
	5.	Ian Sommerville, Software Engineering, 9th Edition, , Addision-Wesley, 2010.
	E Boo	ks / MOOCs/ NPTEL
	1.	https://www.coursera.org/specializations/software-engineering
	2.	https://nptel.ac.in/courses/106105182

WEB SERVICES

Course Code: 22CSE234 Course Type PEC									
Teac	hing Hours/Week (I · T· P· S)	3+0+0+0	Credits	03					
Tota	Teaching Hours	40	CIF + SFF Marks	50+50					
Course	Objectives:			50.50					
course	Objectives.								
1.	1. To provide a basic conceptual understanding of web enterprise architectures.								
2.	2. To explore distributed remote communication.								
3.	3. To understand the basic concepts of Service Oriented Architecture.								
4.	To explore XML, web services	, web service s	ecurity and its implementa	tion.					
5.	To understand micro services	and enterprise	application patterns.						
		UNIT-I							
Web Ar	chitecture: MVC, middleware - D	Design conside	rations, Issues in web						
applicat	tion design: Security issues and i	interoperability	v issues (WS-I).						
RPC, Jav	va RMI, message queuing, Data	Serialization -	MQTT, RabbitMQ, JMS-						
JSON -	AVRO, Thrift, protocol buffer.			15 Hours					
		UNIT-II		1					
Introdu	cing SOA- SOA triangle, layered	architecture o	f SOA, BPO - Business						
Process	Outsourcing - Web service corr	nposition and c	oordination.	15 Hours					
Web se	Web service creation and accessing - WSDL, SOAP, UDDI, XINS, JSON-RPC,								
JSON-V	JSON-WSP, REST- full web services, mashup, SEMANTIC WEB Services - RDF,								
RDFS, C	owl, sparql								
Evolutio	n Modeling convices Integrat	ion Donloyma	nt Tosting Monitoring						
Security	/ Implementation of micro services	ces Concurren	cy natterns Session state						
pattern	s Web service security – protoco	ols	cy patterns, 50551011 state	10 Hours					
puttern		010.							
Course	Outcomes: At the end of the co	ourse student v	vill be able to						
1.	To identify issues in web appl	ications archite	ecture						
2		•	• • • •						
2.	communication protocols	nitecture to pro	ovide services to compone	nts using					
2	To build convice priorted arch	vitactura for a a	iven application						
5.	i o bulla service-orientea arch	mecture for a g	лиен аррисацон						
4.	To identify appropriate entern	orise applicatio	n patterns						
5.	To implement different web s	ervices archited	tures						
6.	To identify issues in web appl	ications archite	ecture						
	, , , , , , , , , , , , , , , , , , , ,								
7.	To apply Service oriented arch	nitecture to pro	ovide services to compone	nts using					
	communication protocols								

Deemed to be University

	Program Outcomes→	1	2	3	4	5	6	7	8	PSC	D↓	
	↓ Course Outcomes									1	2	
	1	3		2						3	2	
	2	3		2						3	2	
	3	3		2		3				3	2	
	4	3		2						3	2	
	5	3		2						3	2	
TEXTBO	DOKS:											
1. J.D.Meier, Alex Homer,"Web Application Architecture guide, Patterns and												
	Practices", Microsoft 2008.											
REFERE	REFERENCE BOOKS:											
1.	ThomasErl," Service-Oriente	d Ar	chite	ectu	re: C	once	epts,	Tech	nolog	gy, and	d Des	sign",
	Pearson Education, 2005.											
2.	Andrew S. Tenenbaum, Marteen Van Steen," Distributed Systems, Principles and											
	Paradigms", Second Edition, Pearson, Prentice Hall,2007.											
3.	Sam Newman," Building Mic	crose	ervic	es",	O'Re	eilly,2	2015	•				
4.	Martin Fowler, David Rice	e, N	/Jattl	hew	Foe	emm	nel,	Edwa	ard H	ieatt,	Rob	ertMee,
	RandyStafford," Patterns	of	Ent	erpr	ise	Ар	plica	tion	Arch	nitectu	re",A	ddison-
	Wesleyy,2002.7.Sacha Krak	owia	ık,"	Mide	dlew	are	Arc	hitec	ture v	with F	atte	rns and
	Frameworks",2009											
5.	Leonard Richardson, Sam R	uby	, "Re	stful	We	b Se	rvice	es", C	'Reilly	/ Medi	ia; Fii	rst
	Edition edition (May 15, 200)7)										
6.	Ben Smith," Beginning JSON	I″, A	pres	s,20	15							
7.	Mark O' Neill," Web services	s sec	urity	/" , N	<u>lcG</u> r	aw I	Hill,2	003				
8.	Kapil Pant, "Business Proces	s Or	ches	trati	on f	or S	ΟAι	ising	BPMN	l and	BPEL	.", Packt
	publishing,2008							-				
10.	Gustavo Alonso,Fabio Casa	tii, ⊦	larur	ni Kı	uno,	Vija	уМа	chira	ju, "W	'ebSer	vices	5-
	Concepts, Architectures and	Ар	plica	tions	s", S	oring	ger \	/erlag	g,2004	ŀ		

MOOC Course

Course Code:	22CSE	Course Type	PEC
Teaching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03
Total Teaching Hours	40	CIE + SEE Marks	50+50

- Any MOOC course that is having contact hours in the range of 35-45 has to be selected.
- The selected subject is to be approved by the DPGC.
- The MOOC course is to be completed during the time frames of the running semester.
- Student must pass the exam and produce the certificate of clearing the exam.

DATA ANALYTICS USING R PROGRAMMING

Course Code:	22CSEAU1	Course Type	Audit
Teaching Hours/Week (L: T: P: S)	3+0+0+0	Credits	0
Total Teaching Hours	26	CIE + SEE Marks	50+50

Unit – I

- Introduction to R: Handling Packages in R: Installing a R Package, Input and Output

 Entering Data from keyboard Printing fewer digits or more digits,
- R Data Types, R Variables, R Operators, R Decision Making, R Loops.
- R-Function, R-Strings, R Vectors, R List, R Matrices, R Arrays.
- Data Frames, Expand Data Frame, Loading and handling Data in R
- R-CSV Files, R -Excel File
- Descriptive Statistics: Data Range, Frequencies, Mode, Mean and Median
- Standard Deviation Correlation Spotting Problems in Data with Visualization
- R Pie Charts
- R Histograms

26 Hours

TEXTBOOKS:

1. Tilman M. Davies, "The Book of R: A First Course in Programming and Statistics", No Starch Press; 1st edition ,2016.

2. Introduction to Linear Regression Analysis by Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining (Wiley).

REFERENCE BOOKS:

1. Andrie de Vries and Joris Meys. "R For Dummies", 2nd Edition, John Wiley & Sons; 2nd edition, 2015.

2. Hadley Wickham, Garrett Grolemund, "R for data science: Import, Tidy, Transform, Visualize, And Model Data", O'Reilly; 1st edition, 2017.

3. Linear Models and Generalizations - Least Squares and Alternatives by C.R. Rao,

H. Toutenburg, Shalabh, and C. Heumann (Springer, 2008)

MOOCs:

1. Data Science: Foundations using R Specialization

https://www.coursera.org/specializations/data-science-foundations-r

Full stack Web Development					
Course Code:	22CSEAP1/2	Course Type	Audit		
Teaching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03		
Total Teaching Hours	40	CIE + SEE Marks	50+50		

All-in-One JavaScript Development Suite

Fundamentals Of JavaScript, JavaScript for Beginning Web Developers, JavaScript for Absolute Beginners, Fundamentals of jQuery, Fundamentals of Ajax Development, Create a node.js Real Time Chat Application

All-In-One HTML/HTML5 And CSS/CSS3 Suite, Applying Designs to Wire Frames with HTML5 and CSS3, Build Your Own HTML5 Video Player, Building Responsive Websites with HTML5 and CSS.

Node.Js - Introduction and Foundation, working with shrink-wrap to lock the node modules versions Working with asynchronous programming Building a HTTP Server with Node.JS using HTTP APIs File System Buffers, Streams, and Events Multi-Processing in NodeJS ExpressJS Express JS with MongoDB and Sqlite

Angular - What is Angular? Preparing for TypeScript Angular-4 new features Building with A4 Components Bootstrap Scaffolding Angular 4 Binding and Events Dependency Injection and services Directives Pipes Forms HTTP, Promises, and Observables

MongoDB Developer and Administrator -

Introduction to NoSQL databases, CRUD Operations in MongoDB, Indexing and Aggregation Replication and Sharding, Developing Java and Node JS Application with MongoDB

React.js - Welcome to Starting with React, React Components, React State and Prop, React Event Handling Routing in React flux Styling React

26 Hours

MOOC Course				
Course Code:	22CSEAP1/2	Course Type	Audit	
Teaching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03	
Total Teaching Hours	40	CIE + SEE Marks	50+50	

Syllabus as defined by the course provider. Duration should be 25-30 hours.